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Multiprocessing 

•! Flynn’s Taxonomy of Parallel Machines 
–! How many Instruction streams? 

–! How many Data streams? 

•! SISD: Single I Stream, Single D Stream 
–! A uniprocessor 

•! SIMD: Single I, Multiple D Streams 

–! Each “processor” works on its own data 

–! But all execute the same instrs in lockstep 

–! Where is SIMD common? 
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Flynn’s Taxonomy 

•! MISD: Multiple I, Single D Stream 
–! Not used much 

•! MIMD: Multiple I, Multiple D Streams 

–! Each processor executes its own instructions and 
operates on its own data 

–! This is your typical off-the-shelf multiprocessor 
(made using a bunch of “normal” processors) 

•! Not superscalar 

•! Each node is superscalar 

•! Lessons will apply to multi-core too! 

What’s superscalar? 

lw r2, 0(R1)   # Page fault 
add r3, r2, r2  # waits 
sub r6, r7, r8  # start? 
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In Pictures: 
•! Uni: 

•! Pipelined 

•! Superscalar 

•! VLIW/”EPIC” 

•! Centralized Shared Memory 

•! Distributed Shared Memory 
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Multiprocessors 

•! Why did we need multiprocessors? 
–! Uniprocessor speed improved fast 

–! But there are things that needed even more speed 
•! Wait for a few years for Moore’s law to catch up? 

•! Or use multiple processors and do it sooner? 

•! (Is Moore’s Law still catching up?  M/C?) 

•! Multiprocessor software problem 

–! Most code is sequential (for uniprocessors) 
•! MUCH easier to write and debug 

–! Correct parallel code very, very difficult to write 
•! Efficient and correct is much more difficult 

•! Debugging even more difficult  

Let’s look at a few MIMD example configurations… 
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MIMD Multiprocessors 

Centralized 

Shared 

Memory 

Note:  just 1 memory 
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MIMD Multiprocessors 
Distributed Memory 

Multiple, distributed memories here. 

10 

University of Notre Dame 

10 Lecture 28 – Parallel Processing 

Before, we did parallel processing by 
chaining together separate 

processors. 

Now we can do it on the same chip. 
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Ok, after all of that, what does 
parallel processing really do for 

performance? 
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Speedup 
metric for performance on latency-sensitive applications 

•! Time(1)  /  Time(P)    for P processors 
–! note: must use the best sequential algorithm for 
Time(1) -- the parallel algorithm may be different. 
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typical: rolls off 
w/some # of 
processors 

occasionally see 
“superlinear”... why? 
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Parallel Programming 

•! Parallel software is the problem 

•! Need to get significant performance improvement 

–! Otherwise, just use a faster uniprocessor, since it’s 
easier! 

•! Difficulties 
–! Partitioning 

–! Coordination 

–! Communications overhead 

See Examples 1 & 2 
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Other Problems:  Cache Coherence 
•! Shared memory easy with no caches 

–! P1 writes, P2 can read 
–! Only one copy of data exists (in memory) 

•! Caches store their own copies of the data 
–! Those copies can easily get inconsistent 
–! Classical example: adding to a sum 

•! P1 loads allSum, adds its mySum, stores new allSum 
•! P1’s cache now has dirty data, but memory not updated 
•! P2 loads allSum from memory, adds its mySum, stores 

allSum 
•! P2’s cache also has dirty data 
•! Eventually P1 and P2’s cached data will go to memory 
•! Regardless of write-back order, final value ends up wrong 

If # of nodes so much as moderate, write-through not practical. 
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Other Problems:  Contention 

•! Contention for access to shared resources - esp. 
memory banks or remote elements - may dominate 
overall system scalability 

–! The problem: 
•! Neither network technology nor chip memory bandwidth has 

grown at the same rate as the processor execution rate or 
data access demands 

–! With success of Moore’s Law: 
•! Amt. of data per memory chip is growing such that it takes 

an increasing # of CCs to touch all bytes per chip at least 
once 

–! Imposes a fundamental bound on system scalability 

–! Is a significant contributor to single digit performance 
efficiencies by many of today’s large scale apps. 
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Other Problems:  Latency 

•! …is already a major source of performance 
degradation 
–! Architecture charged with hiding local latency 

•! (that’s why we talked about registers, caches, IC, etc.) 

–! Hiding global latency is task of programmer 
•! (I.e. manual resource allocation) 

•! Today: 
–! multiple clock cycles to cross chip 

–! access to DRAM in 100s of CCs 

–! round trip remote access in 1000s of CCs 

•! In spite of progress in NW technology, increases in 
clock rate may cause delays to reach 1,000,000s of 
CCs in worst cases 
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Other problems… 

•! Reliability: 
–! Improving yield and achieving high “up time” 

•! (think about how performance might suffer if one of the 1 
million nodes fails every x number of seconds or minutes…) 

–! Solve with checkpointing, other techniques 

•! Programming languages, environments, & methodologies: 
–! Need simple semantics and syntax that can also expose 

computational properties to be exploited by large-scale 
architectures 

19 

University of Notre Dame 

19 Lecture 28 – Parallel Processing 

Seems like lots of trouble. 
Why do it? 

Because we sort of have to… 
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Why parallel processing? 

•! Need more high performance supercomputing 
capability 
–! FLOP History: 

•! MegaFLOPS 1970s 

•! GigaFLOPS 1980s 

•! TeraFLOPS 1990s (1994) 

•! PetaFLOPS (2010) (ish) 

–! About 3 orders of magnitude every 12 years… 

•! Next target 
–! ExaFLOPS (1018 FLOPS) 

•! Ultimate limit? 
–! ZettaFLOPS (1021 FLOPS) 

•! Today’s lecture:  can we get to 1021 FLOPS?  And Why? 
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Parallel processing enables solutions 
to important problems. 

•! Why zettaFLOPS? 
–! More computational capacity needed for science, 

national defense, society as a whole… 

•! Good example: 
–! Climate modeling… 

•! Climate modelers want - actually should say need - 1021 
FLOPS to do accurate modeling… 

•! …Ideally with a program-based model… 

23 

University of Notre Dame 

23 Lecture 28 – Parallel Processing 

A silicon zettaflop won’t be easy. 
(technology still can limit) 

•! As just mentioned, to get to a ZF, also need to 
consider storage? 

•! Thus, question #1:  how much is enough? 

–! Actually some debate about this… 
•! Option 1:  1 ZB for 1 ZF 

•! Option 2:  0.3 ZB / ZF 

•! Option 3: 
–! Gigabytes should equal at least sustained GF to the 3/4th power 

–! This leads to 1 EB / ZF 

–! We’ll consider all of these… 
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It’s big. 

Note:  this is the BEST case… 
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It’s hot. 

~200 MW 
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Another kind of parallelism 
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Multithreading 
•! Performing multiple threads of execution in parallel 

–! Replicate registers, PC, etc. 
–! Fast switching between threads 

•! Fine-grain multithreading 
–! Switch threads after each cycle 
–! Interleave instruction execution 
–! If one thread stalls, others are executed 

•! Coarse-grain multithreading 
–! Only switch on long stall (e.g., L2-cache miss) 
–! Simplifies hardware, but doesn’t hide short stalls (eg, data 

hazards) 


