
1

University of Notre Dame

1 Lecture 28 – Parallel Processing

Lecture 28
Parallel Processing

2

University of Notre Dame

2 Lecture 28 – Parallel Processing

3

University of Notre Dame

3 Lecture 28 – Parallel Processing

Multiprocessing

•! Flynn’s Taxonomy of Parallel Machines
–! How many Instruction streams?

–! How many Data streams?

•! SISD: Single I Stream, Single D Stream
–! A uniprocessor

•! SIMD: Single I, Multiple D Streams

–! Each “processor” works on its own data

–! But all execute the same instrs in lockstep

–! Where is SIMD common?

4

University of Notre Dame

4 Lecture 28 – Parallel Processing

Flynn’s Taxonomy

•! MISD: Multiple I, Single D Stream
–! Not used much

•! MIMD: Multiple I, Multiple D Streams

–! Each processor executes its own instructions and
operates on its own data

–! This is your typical off-the-shelf multiprocessor
(made using a bunch of “normal” processors)

•! Not superscalar

•! Each node is superscalar

•! Lessons will apply to multi-core too!

What’s superscalar?

lw r2, 0(R1) # Page fault
add r3, r2, r2 # waits
sub r6, r7, r8 # start?

5

University of Notre Dame

5 Lecture 28 – Parallel Processing

In Pictures:
•! Uni:

•! Pipelined

•! Superscalar

•! VLIW/”EPIC”

•! Centralized Shared Memory

•! Distributed Shared Memory

P M

M

M

M

P

M

P

P M

P M

N

E

T
SISD

MIMD

6

University of Notre Dame

6 Lecture 28 – Parallel Processing

Multiprocessors

•! Why did we need multiprocessors?
–! Uniprocessor speed improved fast

–! But there are things that needed even more speed
•! Wait for a few years for Moore’s law to catch up?

•! Or use multiple processors and do it sooner?

•! (Is Moore’s Law still catching up? M/C?)

•! Multiprocessor software problem

–! Most code is sequential (for uniprocessors)
•! MUCH easier to write and debug

–! Correct parallel code very, very difficult to write
•! Efficient and correct is much more difficult

•! Debugging even more difficult

Let’s look at a few MIMD example configurations…

7

University of Notre Dame

7 Lecture 28 – Parallel Processing 8

University of Notre Dame

8 Lecture 28 – Parallel Processing

MIMD Multiprocessors

Centralized

Shared

Memory

Note: just 1 memory

9

University of Notre Dame

9 Lecture 28 – Parallel Processing

MIMD Multiprocessors
Distributed Memory

Multiple, distributed memories here.

10

University of Notre Dame

10 Lecture 28 – Parallel Processing

Before, we did parallel processing by
chaining together separate

processors.

Now we can do it on the same chip.

11

University of Notre Dame

11 Lecture 28 – Parallel Processing 12

University of Notre Dame

12 Lecture 28 – Parallel Processing

Ok, after all of that, what does
parallel processing really do for

performance?

13

University of Notre Dame

13 Lecture 28 – Parallel Processing

Speedup
metric for performance on latency-sensitive applications

•! Time(1) / Time(P) for P processors
–! note: must use the best sequential algorithm for
Time(1) -- the parallel algorithm may be different.

1 2 4 8 16 32 64

1
 2

4

8

16

3

2

6

4

processors

sp
e
e
d
up

“linear” speedup
(ideal)

typical: rolls off
w/some # of
processors

occasionally see
“superlinear”... why?

14

University of Notre Dame

14 Lecture 28 – Parallel Processing

Parallel Programming

•! Parallel software is the problem

•! Need to get significant performance improvement

–! Otherwise, just use a faster uniprocessor, since it’s
easier!

•! Difficulties
–! Partitioning

–! Coordination

–! Communications overhead

See Examples 1 & 2

15

University of Notre Dame

15 Lecture 28 – Parallel Processing

Other Problems: Cache Coherence
•! Shared memory easy with no caches

–! P1 writes, P2 can read
–! Only one copy of data exists (in memory)

•! Caches store their own copies of the data
–! Those copies can easily get inconsistent
–! Classical example: adding to a sum

•! P1 loads allSum, adds its mySum, stores new allSum
•! P1’s cache now has dirty data, but memory not updated
•! P2 loads allSum from memory, adds its mySum, stores

allSum
•! P2’s cache also has dirty data
•! Eventually P1 and P2’s cached data will go to memory
•! Regardless of write-back order, final value ends up wrong

If # of nodes so much as moderate, write-through not practical.

16

University of Notre Dame

16 Lecture 28 – Parallel Processing

Other Problems: Contention

•! Contention for access to shared resources - esp.
memory banks or remote elements - may dominate
overall system scalability

–! The problem:
•! Neither network technology nor chip memory bandwidth has

grown at the same rate as the processor execution rate or
data access demands

–! With success of Moore’s Law:
•! Amt. of data per memory chip is growing such that it takes

an increasing # of CCs to touch all bytes per chip at least
once

–! Imposes a fundamental bound on system scalability

–! Is a significant contributor to single digit performance
efficiencies by many of today’s large scale apps.

17

University of Notre Dame

17 Lecture 28 – Parallel Processing

Other Problems: Latency

•! …is already a major source of performance
degradation
–! Architecture charged with hiding local latency

•! (that’s why we talked about registers, caches, IC, etc.)

–! Hiding global latency is task of programmer
•! (I.e. manual resource allocation)

•! Today:
–! multiple clock cycles to cross chip

–! access to DRAM in 100s of CCs

–! round trip remote access in 1000s of CCs

•! In spite of progress in NW technology, increases in
clock rate may cause delays to reach 1,000,000s of
CCs in worst cases

18

University of Notre Dame

18 Lecture 28 – Parallel Processing

Other problems…

•! Reliability:
–! Improving yield and achieving high “up time”

•! (think about how performance might suffer if one of the 1
million nodes fails every x number of seconds or minutes…)

–! Solve with checkpointing, other techniques

•! Programming languages, environments, & methodologies:
–! Need simple semantics and syntax that can also expose

computational properties to be exploited by large-scale
architectures

19

University of Notre Dame

19 Lecture 28 – Parallel Processing

Seems like lots of trouble.
Why do it?

Because we sort of have to…

20

University of Notre Dame

20 Lecture 28 – Parallel Processing

Look
back

to Le
cture

 01

21

University of Notre Dame

21 Lecture 28 – Parallel Processing

Why parallel processing?

•! Need more high performance supercomputing
capability
–! FLOP History:

•! MegaFLOPS 1970s

•! GigaFLOPS 1980s

•! TeraFLOPS 1990s (1994)

•! PetaFLOPS (2010) (ish)

–! About 3 orders of magnitude every 12 years…

•! Next target
–! ExaFLOPS (1018 FLOPS)

•! Ultimate limit?
–! ZettaFLOPS (1021 FLOPS)

•! Today’s lecture: can we get to 1021 FLOPS? And Why?

22

University of Notre Dame

22 Lecture 28 – Parallel Processing

Parallel processing enables solutions
to important problems.

•! Why zettaFLOPS?
–! More computational capacity needed for science,

national defense, society as a whole…

•! Good example:
–! Climate modeling…

•! Climate modelers want - actually should say need - 1021
FLOPS to do accurate modeling…

•! …Ideally with a program-based model…

23

University of Notre Dame

23 Lecture 28 – Parallel Processing

A silicon zettaflop won’t be easy.
(technology still can limit)

•! As just mentioned, to get to a ZF, also need to
consider storage?

•! Thus, question #1: how much is enough?

–! Actually some debate about this…
•! Option 1: 1 ZB for 1 ZF

•! Option 2: 0.3 ZB / ZF

•! Option 3:
–! Gigabytes should equal at least sustained GF to the 3/4th power

–! This leads to 1 EB / ZF

–! We’ll consider all of these…

24

University of Notre Dame

24 Lecture 28 – Parallel Processing

It’s big.

Note: this is the BEST case…

25

University of Notre Dame

25 Lecture 28 – Parallel Processing

It’s hot.

~200 MW

26

University of Notre Dame

26 Lecture 28 – Parallel Processing

Another kind of parallelism

27

University of Notre Dame

27 Lecture 28 – Parallel Processing 28

University of Notre Dame

28 Lecture 28 – Parallel Processing

29

University of Notre Dame

29 Lecture 28 – Parallel Processing 30

University of Notre Dame

30 Lecture 28 – Parallel Processing

31

University of Notre Dame

31 Lecture 28 – Parallel Processing 32

University of Notre Dame

32 Lecture 28 – Parallel Processing

33

University of Notre Dame

33 Lecture 28 – Parallel Processing 34

University of Notre Dame

34 Lecture 28 – Parallel Processing

35

University of Notre Dame

35 Lecture 28 – Parallel Processing 36

University of Notre Dame

36 Lecture 28 – Parallel Processing

37

University of Notre Dame

37 Lecture 28 – Parallel Processing 38

University of Notre Dame

38 Lecture 28 – Parallel Processing

39

University of Notre Dame

39 Lecture 28 – Parallel Processing

Multithreading
•! Performing multiple threads of execution in parallel

–! Replicate registers, PC, etc.
–! Fast switching between threads

•! Fine-grain multithreading
–! Switch threads after each cycle
–! Interleave instruction execution
–! If one thread stalls, others are executed

•! Coarse-grain multithreading
–! Only switch on long stall (e.g., L2-cache miss)
–! Simplifies hardware, but doesn’t hide short stalls (eg, data

hazards)

