
University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 1!

An important idea...!

12!

•! We can see CPU performance dependent on:!

–! Clock rate, CPI, and instruction count!

•! CPU time is directly proportional to all 3:!

–! Therefore an x % improvement in any one variable leads
to an x % improvement in CPU performance!

•! But, everything usually affects everything:!

Hardware!
Tech.!

Organization! ISAs!
Compiler!

Technology!

Clock Cycle!
Time!

CPI!

Instruction!
Count!

A common
denominator!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Understand flow through datapath!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Understand how FSM translates to CCs!

Or, if you add a new

instruction, how

FSM affected…."

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 4!

Pipelining Lessons (laundry example)!

•! Multiple tasks operating
simultaneously!

•! Pipelining doesn"t help
latency of single task, it
helps throughput of entire
workload!

•! Pipeline rate limited by
slowest pipeline stage!

•! Potential speedup =
Number pipe stages!

•! Unbalanced lengths of
pipe stages reduces
speedup!

•! Also, need time to “fill”
and “drain” the pipeline.!

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 5!

More technical detail!
•! Book"s approach to draw pipeline timing diagrams…!

–! Time runs left-to-right, in units of stage time!

–! Each “row” below corresponds to distinct initiation!

–! Boundary b/t 2 column entries: pipeline register !

•! (i.e. hamper)!

–! Look at columns to see what stage is doing what!

0 1 2 3 4 5 6

Wash 1 Dry 1 Fold 1 Pack 1

Wash 2 Dry 2 Fold 2 Pack 2

Wash 3 Dry 3 Fold 3 Pack 3

Wash 4 Dry 4 Fold 4 Pack 4

Wash 5 Dry 5 Fold 5

Wash 6 Dry 6

Time for N initiations to complete: NT + (S-1)T
Throughput: Time per initiation = T + (S-1)T/N ! T!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 6!

The hazards of pipelining!
•! Pipeline hazards prevent next instruction from

executing during designated clock cycle!

•! There are 3 classes of hazards:!

–! Structural Hazards:!

•! Arise from resource conflicts !

•! HW cannot support all possible combinations of instructions!

–! Data Hazards:!

•! Occur when given instruction depends on data from an
instruction ahead of it in pipeline!

–! Control Hazards:!

•! Result from branch, other instructions that change flow of
program (i.e. change PC)!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 7!

Stalls and performance!
•! Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle!

•! Pipelining can be viewed to:!

–! Decrease CPI or clock cycle time for instruction!

–! Let"s see what affect stalls have on CPI…!

•! CPI pipelined =!

–! Ideal CPI + Pipeline stall cycles per instruction!

–! 1 + Pipeline stall cycles per instruction!

•! Ignoring overhead and assuming stages are balanced:!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 8!

Data hazards!
•! These exist because of pipelining!

•! Why do they exist???!

–! Pipelining changes order or read/write accesses to
operands!

–! Order differs from order seen by sequentially executing
instructions on unpipelined machine!

•! Consider this example:!

–! ADD R1, R2, R3!

–! SUB R4, R1, R5!

–! AND R6, R1, R7!

–! OR R8, R1, R9!

–! XOR R10, R1, R11!

All instructions after ADD
use result of ADD

ADD writes the register in
WB but SUB needs it in ID.

This is a data hazard

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 9!

Forwarding!

•! Problem illustrated on previous slide can actually be solved
relatively easily – with forwarding!

•! In this example, result of the ADD instruction not really needed
until after ADD actually produces it!

•! Can we move the result from EX/MEM register to the beginning of
ALU (where SUB needs it)?!

–! Yes! Hence this slide!!

•! Generally speaking:!

–! Forwarding occurs when a result is passed directly to functional unit
that requires it.!

–! Result goes from output of one unit to input of another!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 10!

HW Change for Forwarding!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 11!

Hazards vs. Dependencies!
•! dependence: fixed property of instruction stream !

–! (i.e., program) !

•! hazard: property of program and processor
organization !

–! implies potential for executing things in wrong order !

•! potential only exists if instructions can be simultaneously
“in-flight” !

•! property of dynamic distance between instructions vs.
pipeline depth !

•! For example, can have RAW dependence with or
without hazard !

–! depends on pipeline !

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 12!

Branch/Control Hazards!
•! So far, we"ve limited discussion of hazards to:!

–! Arithmetic/logic operations!

–! Data transfers!

•! Also need to consider hazards involving branches:!

–! Example:!
•! 40: !beq !$1, $3, $28 # ($28 gives address 72)!

•! 44: !and !$12, $2, $5!

•! 48: !or !$13, $6, $2!

•! 52: !add !$14, $2, $2!

•! 72: !lw !$4, 50($7)!

•! How long will it take before the branch decision takes
effect?!

–! What happens in the meantime?!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 13!

Branch Prediction!
•! Prior solutions are “ugly”!

•! Better (& more common): guess in IF stage!

–! Technique is called “branch predicting”; needs 2 parts:!
•! “Predictor” to guess where/if instruction will branch (and to

where)!

•! “Recovery Mechanism”: i.e. a way to fix your mistake!

–! Prior strategy:!
•! Predictor: always guess branch never taken!

•! Recovery: flush instructions if branch taken!

–! Alternative: accumulate info. in IF stage as to…!

•! Whether or not for any particular PC value a branch was
taken next!

•! To where it is taken!

•! How to update with information from later stages!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 14!

Is there a problem with DRAM?!

µProc"
60%/yr."

(2X/1.5yr)"

DRAM"
9%/yr."

(2X/10yrs)"
1"

10"

100"

1000"

1
9
8
0
"

1
9
8
1
"

1
9
8
3
"

1
9
8
4
"

1
9
8
5
"

1
9
8
6
"

1
9
8
7
"

1
9
8
8
"

1
9
8
9
"

1
9
9
0
"

1
9
9
1
"

1
9
9
2
"

1
9
9
3
"

1
9
9
4
"

1
9
9
5
"

1
9
9
6
"

1
9
9
7
"

1
9
9
8
"

1
9
9
9
"

2
0
0
0
"

DRAM"

CPU"

1
9
8
2
"

Processor-Memory!
Performance Gap:#
grows 50% / year!

P
e
rf

o
rm

a
n

c
e
!

Time!

“Moore#s Law”"

Processor-DRAM Memory Gap (latency)!

Why is
this a

problem?!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 15!

The Full Memory Hierarchy #
“always reuse a good idea”!

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit
-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Our current
focus

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 16!

Terminology Summary!
•! Hit: data appears in block in upper level (i.e. block X in cache) !

–! Hit Rate: fraction of memory access found in upper level!

–! Hit Time: time to access upper level which consists of!

•! RAM access time + Time to determine hit/miss!

•! Miss: data needs to be retrieved from a block in the lower level (i.e. block Y
in memory)!

–! Miss Rate = 1 - (Hit Rate)!

–! Miss Penalty: Extra time to replace a block in the upper level + !

•! Time to deliver the block the processor!

•! Hit Time << Miss Penalty (500 instructions on 21264)!

Lower Level
Memory Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 17!

Average Memory Access Time!

•! Hit time: basic time of every access.!

•! Hit rate (h): fraction of access that hit!

•! Miss penalty: extra time to fetch a block from lower
level, including time to replace in CPU!

AMAT = HitTime + (1 - h) x MissPenalty

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 18!

Where can a block be placed in a $?!

•! 3 schemes for block placement in a cache:!

–! Direct mapped cache:!
•! Block (or data to be stored) can go to only 1 place in cache!

•! Usually: (Block address) MOD (# of blocks in the cache)!

–! Fully associative cache:!
•! Block can be placed anywhere in cache!

–! Set associative cache:!
•! “Set” = a group of blocks in the cache!

•! Block mapped onto a set & then block can be placed
anywhere within that set!

•! Usually: (Block address) MOD (# of sets in the cache)!

•! If n blocks, we call it n-way set associative!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 19!

How is a block found in the cache?!

•! Block offset field selects data from block!

–! (i.e. address of desired data within block)!

•! Index field selects a specific set!

•! Tag field is compared against it for a hit!

•! Could we compare on more of address than the tag?!

–! Not necessary; checking index is redundant!
•! Used to select set to be checked!

•! Ex.: Address stored in set 0 must have 0 in index field!

–! Offset not necessary in comparison –entire block is
present or not and all block offsets must match!

Block Address

Tag Index

Block
Offset

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 20!

Reducing cache misses!
•! Obviously, we want data accesses to result in cache

hits, not misses –this will optimize performance!

•! Start by looking at ways to increase % of hits….!

•! …but first look at 3 kinds of misses!!

–! Compulsory misses:!
•! Very 1st access to cache block will not be a hit –the data"s

not there yet!!

–! Capacity misses:!
•! Cache is only so big. Won"t be able to store every block

accessed in a program – must swap out!!

–! Conflict misses:!
•! Result from set-associative or direct mapped caches!

•! Blocks discarded/retrieved if too many map to a location!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Optimizing cache design!

Miss rate vs. block size

0

5

10

15

20

25

16 32 64 128 256

Block Size

M
is

s
 R

a
te

1K

4K

16K

64K

256K

(Assuming total cache size stays constant for each curve)

More conflict misses

Total $ capacity

More compulsory

misses

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

A 4-entry direct mapped cache with 4 data words/block

1

Physical Address (10 bits)

Tag
(6 bits)

Index
(2 bits)

Offset
(2 bits)

Assume we want to read the

following data words:

Tag Index Offset Address Holds Data

101010 | 10 | 00 3510

101010 | 10 | 01 2410

101010 | 10 | 10 1710

101010 | 10 | 11 2510

All of these physical addresses map to the

same cache entry

All of these physical addresses would have

the same tag

2 If we read 101010 10 01 we want to bring

data word 2410 into the cache.

Where would this data go? Well, the index

is 10. Therefore, the data word will go

somewhere into the 3rd block of the cache.

(make sure you understand terminology)

More specifically, the data word would go

into the 2nd position within the block –

because the offset is ’01’

3 The principle of spatial locality says that if we use

one data word, we’ll probably use some data words

that are close to it – that’s why our block size is
bigger than one data word. So we fill in the data

word entries surrounding 101010 10 01 as well.

Tag 00 01 10 11

00

01

10

11

V D

101010 2410 3510 1710 2510

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Second-level caches!
•! This will of course introduce a new definition for

average memory access time:!

–! Hit timeL1 + Miss RateL1 * Miss PenaltyL1!

–! Where, Miss PenaltyL1 =!
•! Hit TimeL2 + Miss RateL2 * Miss PenaltyL2!

•! So 2nd level miss rate measure from 1st level cache misses…!

•! A few definitions to avoid confusion:!

–! Local miss rate:!
•! # of misses in the cache divided by total # of memory

accesses to the cache – specifically Miss RateL2 !

–! Global miss rate:!
•! # of misses in the cache divided by total # of memory

accesses generated by the CPU – specifically -- Miss RateL1 *
Miss RateL2!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Virtual Memory!
•! Some facts of computer life…!

–! Computers run lots of processes simultaneously!

–! No full address space of memory for each process!

•! Physical memory expensive and not dense - thus, too small!

–! Must share smaller amounts of physical memory among many
processes!

•! Virtual memory is the answer!!

–! Divides physical memory into blocks, assigns them to different
processes!

•! Compiler assigns data to a “virtual” address. !

–! VA translated to a real/physical somewhere in memory!

•! Allows program to run anywhere; where is determined by a particular
machine, OS!

–! + Business: common SW on wide product line (w/o VM, sensitive to
actual physical memory size)!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Virtual address space #
greater than #

Logical address space!

Physical

Address

Space

Logical

Address

Space

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

The gist of virtual memory!

•! Relieves problem of making
a program that was too large
to fit in physical memory –
well…fit!!

•! Allows program to run in
any location in physical
memory !

–! Really useful as you
might want to run same
program on lots
machines…!

0

4

8

12

Virtual

Address

A

B

C

D

0

4K

8K

12K

Physical

Address

C

A

B

D Disk

16K

20K

24K

28K

Virtual Memory

Physical

Main Memory

Logical program is in contiguous VA space; here, pages: A, B, C, D;

(3 are in main memory and 1 is located on the disk)

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Review: Address Translation!

Program Paging Main Memory

Virtual Address

Register

Page Table

Page

Frame

Offset

P#

Frame #

Page Table Ptr

Page # Offset Frame # Offset

+

Both in memory!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Paging/VM!

42 356

Physical

Memory

356

page table

i

Operating

System

Disk

Special-purpose cache for translations

Historically called the TLB: Translation Lookaside Buffer

Cache!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Review: Translation Cache!
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU
TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Trans-

lation

hit

miss Translation

with a TLB

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

An example of a TLB!

Page frame addr.
Page

Offset
<30> <13>

V

<1>

Tag

<30>

Phys. Addr.

<21>

... …

1 2

32:1 Mux

3

4

R

<2>

W

<2>

…

<21>

<13>

(Low-order 13

bits of addr.)

(High-order 21

bits of addr.)

34-bit

 physical
address

Read/write policies and permissions…

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Speedup#
metric for performance on latency-sensitive applications!

•! Time(1) / Time(P) for P processors!

–!note: must use the best sequential algorithm for Time(1) --
the parallel algorithm may be different.!

1 2 4 8 16 32 64

1

2

4

8

1
6

3
2

6
4

processors

sp
ee

d
u

p

“linear” speedup

(ideal)

typical: rolls off

w/some # of

processors

occasionally see

“superlinear”... why?

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

More examples with Amdahl"s Law!
•! Sequential part can limit speedup!

•! Example: 100 processors, 90$ speedup?!

–! Tnew = Tparallelizable/100 + Tsequential!

–! !

–! Solving: Fparallelizable = 0.999!

•! Need sequential part to be 0.1% of original time!

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

=
+!

=

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review!

Scaling Example!
•! Workload: sum of 10 scalars, and 10 $ 10 matrix sum!

–! Speed up from 10 to 100 processors!

•! Single processor: Time = (10 + 100) $ tadd!

•! 10 processors!
–! Time = 10 $ tadd + 100/10 $ tadd = 20 $ tadd!

–! Speedup = 110/20 = 5.5 (55% of potential)
!

•! 100 processors!

–! Time = 10 $ tadd + 100/100 $ tadd = 11 $ tadd!

–! Speedup = 110/11 = 10 (10% of potential)!

•! Assumes load can be balanced across processors!

