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An important idea...!

12!

•! We can see CPU performance dependent on:!

–! Clock rate, CPI, and instruction count!

•! CPU time is directly proportional to all 3:!

–! Therefore an x % improvement in any one variable leads 
to an x % improvement in CPU performance!

•! But, everything usually affects everything:!

Hardware!
Tech.!

Organization! ISAs!
Compiler!

Technology!

Clock Cycle!
Time!

CPI!

Instruction!
Count!

A common 
denominator!
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Understand flow through datapath!
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Understand how FSM translates to CCs!

Or, if you add a new 

instruction, how 

FSM affected…."
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Pipelining Lessons (laundry example)!

•! Multiple tasks operating 
simultaneously!

•! Pipelining doesn"t help 
latency of single task, it 
helps throughput of entire 
workload!

•! Pipeline rate limited by 
slowest pipeline stage!

•! Potential speedup = 
Number pipe stages!

•! Unbalanced lengths of 
pipe stages reduces 
speedup!

•! Also, need time to “fill” 
and “drain” the pipeline.!
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More technical detail!
•! Book"s approach to draw pipeline timing diagrams…!

–! Time runs left-to-right, in units of stage time!

–! Each “row” below corresponds to distinct initiation!

–! Boundary b/t 2 column entries:  pipeline register !

•! (i.e. hamper)!

–! Look at columns to see what stage is doing what!

0 1 2 3 4 5 6 

Wash 1 Dry 1 Fold 1 Pack 1 

Wash 2 Dry 2 Fold 2 Pack 2 

Wash 3 Dry 3 Fold 3 Pack 3 

Wash 4 Dry 4 Fold 4 Pack 4 

Wash 5 Dry 5 Fold 5 

Wash 6 Dry 6 

Time for N initiations to complete:  NT + (S-1)T 
Throughput:  Time per initiation = T + (S-1)T/N ! T! 
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The hazards of pipelining!
•! Pipeline hazards prevent next instruction from 

executing during designated clock cycle!

•! There are 3 classes of hazards:!

–! Structural Hazards:!

•! Arise from resource conflicts !

•! HW cannot support all possible combinations of instructions!

–! Data Hazards:!

•! Occur when given instruction depends on data from an 
instruction ahead of it in pipeline!

–! Control Hazards:!

•! Result from branch, other instructions that change flow of 
program (i.e. change PC)!
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Stalls and performance!
•! Stalls impede progress of a pipeline and result in 

deviation from 1 instruction executing/clock cycle!

•! Pipelining can be viewed to:!

–! Decrease CPI or clock cycle time for instruction!

–! Let"s see what affect stalls have on CPI…!

•! CPI pipelined =!

–! Ideal CPI + Pipeline stall cycles per instruction!

–! 1 + Pipeline stall cycles per instruction!

•! Ignoring overhead and assuming stages are balanced:!
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Data hazards!
•! These exist because of pipelining!

•! Why do they exist???!

–! Pipelining changes order or read/write accesses to 
operands!

–! Order differs from order seen by sequentially executing 
instructions on unpipelined machine!

•! Consider this example:!

–! ADD R1, R2, R3!

–! SUB R4, R1, R5!

–! AND R6, R1, R7!

–! OR R8, R1, R9!

–! XOR R10, R1, R11!

All instructions after ADD 
use result of ADD  

ADD writes the register in 
WB but SUB needs it in ID. 

This is a data hazard 
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Forwarding!

•! Problem illustrated on previous slide can actually be solved 
relatively easily – with forwarding!

•! In this example, result of the ADD instruction not really needed 
until after ADD actually produces it!

•! Can we move the result from EX/MEM register to the beginning of 
ALU (where SUB needs it)?!

–! Yes!  Hence this slide!!

•! Generally speaking:!

–! Forwarding occurs when a result is passed directly to functional unit 
that requires it.!

–! Result goes from output of one unit to input of another!
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HW Change for Forwarding!
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Hazards vs. Dependencies!
•! dependence: fixed property of instruction stream !

–! (i.e., program) !

•! hazard: property of program and processor 
organization !

–! implies potential for executing things in wrong order !

•! potential only exists if instructions can be simultaneously 
“in-flight” !

•! property of dynamic distance between instructions vs. 
pipeline depth !

•! For example, can have RAW dependence with or 
without hazard !

–! depends on pipeline !
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Branch/Control Hazards!
•! So far, we"ve limited discussion of hazards to:!

–! Arithmetic/logic operations!

–! Data transfers!

•! Also need to consider hazards involving branches:!

–! Example:!
•! 40: !beq !$1, $3, $28              # ($28 gives address 72)!

•! 44: !and !$12, $2, $5!

•! 48: !or !$13, $6, $2!

•! 52: !add !$14, $2, $2!

•! 72: !lw !$4, 50($7)!

•! How long will it take before the branch decision takes 
effect?!

–! What happens in the meantime?!
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Branch Prediction!
•! Prior solutions are “ugly”!

•! Better (& more common):  guess in IF stage!

–! Technique is called “branch predicting”; needs 2 parts:!
•! “Predictor” to guess where/if instruction will branch (and to 

where)!

•! “Recovery Mechanism”:  i.e. a way to fix your mistake!

–! Prior strategy:!
•! Predictor:  always guess branch never taken!

•! Recovery:  flush instructions if branch taken!

–! Alternative:  accumulate info. in IF stage as to…!

•! Whether or not for any particular PC value a branch was 
taken next!

•! To where it is taken!

•! How to update with information from later stages!

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 14!

Is there a problem with DRAM?!
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“Moore#s Law”"

Processor-DRAM Memory Gap (latency)!

Why is 
this a 

problem?!
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The Full Memory Hierarchy #
“always reuse a good idea”!

CPU Registers 
100s Bytes 
<10s ns 

Cache 
K Bytes 
10-100 ns 
1-0.1 cents/bit 

Main Memory 
M Bytes 
200ns- 500ns 
$.0001-.00001 cents /bit 

Disk 
G Bytes, 10 ms  
(10,000,000 ns) 

10   - 10  cents/bit 
-5 -6 

Capacity 
Access Time 
Cost 

Tape 
infinite 
sec-min 
10 -8 

Registers 

Cache 

Memory 

Disk 

Tape 

Instr. Operands 

Blocks 

Pages 

Files 

Staging 
Xfer Unit 

prog./compiler 
1-8 bytes 

cache cntl 
8-128 bytes 

OS 
4K-16K bytes 

user/operator 
Mbytes 

Upper Level 

Lower Level 

faster 

Larger 

Our current 
focus 
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Terminology Summary!
•! Hit: data appears in block in upper level (i.e. block X in cache) !

–! Hit Rate: fraction of memory access found in upper level!

–! Hit Time: time to access upper level which consists of!

•! RAM access time + Time to determine hit/miss!

•! Miss: data needs to be retrieved from a block in the lower level (i.e. block Y 
in memory)!

–! Miss Rate  = 1 - (Hit Rate)!

–! Miss Penalty: Extra time to replace a block in the upper level  + !

•! Time to deliver the block the processor!

•! Hit Time << Miss Penalty (500 instructions on 21264)!

Lower Level 
Memory Upper Level 

Memory 
To Processor 

From Processor 
Blk X 

Blk Y 
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Average Memory Access Time!

•! Hit time:  basic time of every access.!

•! Hit rate (h): fraction of access that hit!

•! Miss penalty: extra time to fetch a block from lower 
level, including time to replace in CPU!

AMAT  =  HitTime  + (1 - h)  x  MissPenalty 
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Where can a block be placed in a $?!

•! 3 schemes for block placement in a cache:!

–! Direct mapped cache:!
•! Block (or data to be stored) can go to only 1 place in cache!

•! Usually:  (Block address) MOD (# of blocks in the cache)!

–! Fully associative cache:!
•! Block can be placed anywhere in cache!

–! Set associative cache:!
•! “Set” = a group of blocks in the cache!

•! Block mapped onto a set & then block can be placed 
anywhere within that set!

•! Usually:  (Block address) MOD (# of sets in the cache)!

•! If n blocks, we call it n-way set associative!
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How is a block found in the cache?!

•! Block offset field selects data from block!

–! (i.e. address of desired data within block)!

•! Index field selects a specific set!

•! Tag field is compared against it for a hit!

•! Could we compare on more of address than the tag?!

–! Not necessary; checking index is redundant!
•! Used to select set to be checked!

•! Ex.:  Address stored in set 0 must have 0 in index field!

–! Offset not necessary in comparison –entire block is 
present or not and all block offsets must match!

Block Address 

Tag Index 

Block 
Offset 

University of Notre Dame!

CSE 30321 - Lecture 29 – 2nd half review! 20!

Reducing cache misses!
•! Obviously, we want data accesses to result in cache 

hits, not misses –this will optimize performance!

•! Start by looking at ways to increase % of hits….!

•! …but first look at 3 kinds of misses!!

–! Compulsory misses:!
•! Very 1st access to cache block will not be a hit –the data"s 

not there yet!!

–! Capacity misses:!
•! Cache is only so big.  Won"t be able to store every block 

accessed in a program – must swap out!!

–! Conflict misses:!
•! Result from set-associative or direct mapped caches!

•! Blocks discarded/retrieved if too many map to a location!
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Optimizing cache design!

Miss rate vs. block size
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A 4-entry direct mapped cache with 4 data words/block 

1 

Physical Address (10 bits) 

Tag 
(6 bits) 

Index 
(2 bits) 

Offset 
(2 bits) 

Assume we want to read the 

following data words: 

Tag       Index  Offset    Address Holds Data 

101010  |  10  |  00   3510 

101010  |  10  |  01   2410 

101010  |  10  |  10   1710 

101010  |  10  |  11   2510 

All of these physical addresses map to the 

same cache entry 

All of these physical addresses would have 

the same tag 

2 If we read 101010 10 01 we want to bring  

data word 2410 into the cache. 

Where would this data go?  Well, the index 

is 10.  Therefore, the data word will go  

somewhere into the 3rd block of the cache. 

(make sure you understand terminology) 

More specifically, the data word would go 

into the 2nd position within the block –  

because the offset is ’01’ 

3 The principle of spatial locality says that if we use 

one data word, we’ll probably use some data words 

that are close to it – that’s why our block size is  
bigger than one data word.  So we fill in the data 

word entries surrounding 101010 10 01 as well. 

Tag 00 01 10 11 

00 

01 

10 

11 

V D 

101010 2410 3510 1710 2510 
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Second-level caches!
•! This will of course introduce a new definition for 

average memory access time:!

–! Hit timeL1 + Miss RateL1 * Miss PenaltyL1!

–! Where, Miss PenaltyL1 =!
•! Hit TimeL2 + Miss RateL2 * Miss PenaltyL2!

•! So 2nd level miss rate measure from 1st level cache misses…!

•! A few definitions to avoid confusion:!

–! Local miss rate:!
•! # of misses in the cache divided by total # of memory 

accesses to the cache – specifically Miss RateL2 !

–! Global miss rate:!
•! # of misses in the cache divided by total # of memory 

accesses generated by the CPU – specifically -- Miss RateL1 * 
Miss RateL2!
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Virtual Memory!
•! Some facts of computer life…!

–! Computers run lots of processes simultaneously!

–! No full address space of memory for each process!

•! Physical memory expensive and not dense - thus, too small!

–! Must share smaller amounts of physical memory among many 
processes!

•! Virtual memory is the answer!!

–! Divides physical memory into blocks, assigns them to different 
processes!

•! Compiler assigns data to a “virtual” address.  !

–! VA translated to a real/physical somewhere in memory!

•! Allows program to run anywhere; where is determined by a particular 
machine, OS!

–! + Business:  common SW on wide product line (w/o VM, sensitive to 
actual physical memory size)!
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Virtual address space #
greater than #

Logical address space!

Physical 

Address 

Space 

Logical 

Address 

Space 
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The gist of virtual memory!

•! Relieves problem of making 
a program that was too large 
to fit in physical memory – 
well…fit!!

•! Allows program to run in 
any location in physical 
memory !

–! Really useful as you 
might want to run same 
program on lots 
machines…!

0 
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12 

Virtual 

Address 
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0 

4K 

8K 

12K 

Physical 

Address 

C 

A 

B 

D Disk 

16K 

20K 

24K 

28K 

Virtual Memory 

Physical 

Main Memory 

Logical program is in contiguous VA space; here, pages:  A, B, C, D; 

(3 are in main memory and 1 is located on the disk) 
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Review: Address Translation!

Program Paging Main Memory 

Virtual Address 

Register 

Page Table 

Page 

Frame 

Offset 

P# 

Frame # 

Page Table Ptr 

Page # Offset Frame # Offset 

+ 

Both in memory! 
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Paging/VM!

42 356 

Physical 

Memory 

356 

page table 

i 

Operating 

System 

Disk 

Special-purpose cache for translations 

Historically called the TLB: Translation Lookaside Buffer 

Cache! 
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Review:  Translation Cache!
Just like any other cache, the TLB can be organized as fully associative, 
      set associative, or direct mapped 

TLBs are usually small, typically not more than 128 - 256 entries even on 
      high end machines.  This permits fully associative 
      lookup on these machines.  Most mid-range machines use small 
      n-way set associative organizations. 

CPU 
TLB 

Lookup 
Cache 

Main 

Memory 

VA PA miss 

hit 

data 

Trans- 

lation 

hit 

miss Translation 

with a TLB 
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An example of a TLB!

Page frame addr. 
Page 

Offset 
<30> <13> 

V 

<1> 

Tag 

<30> 

Phys. Addr. 

<21> 

...                      … 

1 2 

32:1 Mux 

3 

4 

R 

<2> 

W 

<2> 

… 

<21> 

<13> 

(Low-order 13 

bits of addr.) 

(High-order 21 

bits of addr.) 

34-bit 

 physical 
address 

Read/write policies and permissions… 
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Speedup#
metric for performance on latency-sensitive applications!

•! Time(1)  /  Time(P)    for P processors!

–!note: must use the best sequential algorithm for Time(1) -- 
the parallel algorithm may be different.!

1  2  4  8  16  32  64 
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# processors 

sp
ee

d
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p
 

“linear” speedup 

(ideal) 

typical: rolls off 

w/some # of 

processors 

occasionally see 

“superlinear”... why? 
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More examples with Amdahl"s Law!
•! Sequential part can limit speedup!

•! Example: 100 processors, 90$ speedup?!

–! Tnew = Tparallelizable/100 + Tsequential!

–!  !

–! Solving: Fparallelizable = 0.999!

•! Need sequential part to be 0.1% of original time!

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

=
+!

=
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Scaling Example!
•! Workload: sum of 10 scalars, and 10 $ 10 matrix sum!

–! Speed up from 10 to 100 processors!

•! Single processor: Time = (10 + 100) $ tadd!

•! 10 processors!
–! Time = 10 $ tadd + 100/10 $ tadd = 20 $ tadd!

–! Speedup = 110/20 = 5.5 (55% of potential)
!

•! 100 processors!

–! Time = 10 $ tadd + 100/100 $ tadd = 11 $ tadd!

–! Speedup = 110/11 = 10 (10% of potential)!

•! Assumes load can be balanced across processors!


