
CSE 30321 –  Computer Architecture I – Fall 2010 
Homework 07 – Memory Hierarchies 

Assigned:  November 9, 2010, Due:  November 23, 2010, Total Points:  100 
 

Problem 1: (30 points) 
Background: 
One possible organization of the memory hierarchy on an Intel Pentium 4 chip is: 

- An 8KB L1 instruction cache (e.g. the L1 instruction cache contains only instruction encodings) 
- An 8KB L1 data cache (e.g. the L1 instruction cache contains only data words) 
- A 256KB unified L2 cache (e.g. the L2 cache can contain both data and instruction encodings) 
- An 8 MB unified L3 cache (e.g. the L3 cache can contain both data and instruction encodings) 

 
Question A:  (5 points) 
What might be a benefit of splitting up the L1 cache into separate instruction and data caches? 
 
Question B:  (5 points) 
The L1 data cache in the P4 holds 8 KBytes of data.  Each block holds 64 bytes of data and the cache 
is 4-way set associative.  How many blocks are in the cache?  How many sets are in the cache? 
 
Question C:  (5 points) 
The L2 cache in the P4 holds 256 KBytes of data.  The cache is 8-way set associative.  Each block 
holds 128 bytes of data.  If physical addresses are 32 bits long, each data word is 32 bits, and entries 
are word addressable, what bits of the 32 bit physical address comprise the tag, index and offset? 
 
Question D:  (5 points) 
The L3 cache in the P4 holds 8 MBytes of data.  It too is 8-way set associative and each block holds 
128 bytes of data.  If physical addresses are 32 bits long, each data word is 32 bits, and entries are 
word addressable, what bits of the 32 bit physical address comprise the tag, index and offset? 
 
Question E:  (10 points) 
For the P4 architecture discussed above, we know the following: 

- The hit time for either L1 cache is 2 CCs 
- The time required to find data in the L2 cache is 7 CCs 

o Thus, the time to find data in the L2 cache is really 9 CCs – 2 CCs to look in L1 and 7 
more CCs to get the data from L2 

- The time required to find data in the L3 cache is 10 CCs 
o Thus, the time to find data in the L3 cache is 9 CCs + 10 CCs – because we look in L1 

and L2 first 
- If data is not found in the L3 cache, we will need to get data from main memory. 

o The bus between main memory and the L3 cache can transfer 64 bytes of data at a time 
 Thus, 2 main memory references are required to fill up the 128 byte cache block 

o It takes 50 CCs to access main memory once and accesses cannot overlap. 
 
For the benchmark that we are running: 

- The L1 cache hit rate is 90% 
- The L2 cache hit rate is 95% 
- The L3 cache hit rate is 99% 

 
What is the average memory access time? 
 



Problem 2:  (10 points) 
Background: 
You are to design a cache: 

- …that holds 4 KB (note BYTES) of data.  
- …where each data word is just 16 bits long (and addresses are to the word). 
- …that is 2-way set associative 
- …that has128 total blocks  
- …that uses a write back policy 

 
Question: 
Draw the cache.  [Note, you donʼt have to draw every last thing.  Just provide enough information so 
that we know you go the problem right.  I.e. if there are 19 words in a cache block, write block 0, block 
1, …. block 18 
 
Problem 3 (20 points): 
Consider a cache with the following specs: 

- It is 4-way set associative 
- It holds 64 KB of data 
- Data words are 32 bits each 
- Data words are byte addressed 
- Physical addresses are 32 bits 
- There are 64 words per cache block 
- A First-In, First-Out replacement policy is used for each set 
- All cache entries are initially empty (i.e. their valid bits are not set) 

 
At startup the following addresses (in hex) are supplied to this cache in the order below: 

1. AA AB 10 11-B  BC - compulsory miss (block 1) 
2. AA AB 10 11-B  BF - hit (block 1) 
3. FC CB 10 11-B  BD -  compulsory miss (block 2) 
4. AA  AB 10 11-B  BF -  hit (block 2) 
5. FF FB 10 11-B  BC - compulsory miss (block 3) 
6. FF FB 10 11-B  BB - hit (block 3) 
7. FC BD 10 11-B  AC -  compulsory miss (block 4) 
8. AA AB 11 00-C  CF - compulsory miss (block 1) 
9. AA AB 10 11-B  FF - hit (block 1) 
10. FF FF 10 10-A  BC - compulsory miss (block 1) 

 
Question A:  (5 points) 

- How many sets of the cache has this pattern of accesses touched?  
Question B:  (5 points) 

- How many compulsory misses are there for this pattern of accesses?  
Question C:  (5 points) 

- How many conflict misses are there for this pattern of accesses?  
Question D:  (5 points) 

- What is the overall miss rate for this pattern of accesses? 
 



Problem 4 (10 points): 
Background: 
There are many ways to reduce cache misses by changing processor hardware – e.g. making cache 
blocks larger, making larger caches, increasing associativity, etc.  However, cache performance can be 
improved by optimizing software too.   
 
Question: 
If the arrays in the for loop below are stored in memory, there could be many cache misses.  Explain 
why. 
 
 for (j = 0; j < 100; j = j + 1) { 
  for (i = 0; i < 5000; i = i + 1) { 
   x [i] [j] = 2 * x [i] [j] 
 
Problem 5 (30 points): 
As discussed in class, virtual memory uses a page table and TLB to track the mapping of virtual 
addresses to physical addresses.  This exercise shows how the TLB must be updated as addresses 
are accessed.   
 
For this problem, you should assume the following: 

1. Pages have 4 KB of addressable locations 
2. There is a 4-entry, fully-associative TLB 
3. The TLB uses a true, least-recently-used replacement policy 

 
For the pattern of virtual addresses shown below, comment on whether the entry is: 

a. Found in the TLB  
b. Not found in the TLB but is found in the Page Table 
c. Not found in the TLB or the Page Table (thus, there is a page fault) 

 
The initial TLB and page table state is shown below. 
 
If there is a page fault, and you need to replace a page from disk, assume the page number is one 
higher than the current highest page in the page table.  (This is currently 11002 / 1210.  Thus, the next 
page would be 11012 / 1310, the next would be 11102 / 1410, etc.) 
 
Stream of Virtual Addresses: 
 

 MSB   LSB 
1 0000 1111 1111 1111 
2 0111 1010 0010 1000 
3 0011 1101 1010 1101 
4 0011 1010 1001 1000 
5 0001 1100 0001 1001 
6 0001 0000 0000 0000 
7 0010 0010 1101 0000 

 
 
 
 
 



 
Initial TLB State: 
(Note that ʻ1ʼ = “Most Recently Used and ʻ4ʼ = “Least Recently Used”) 
 

Valid LRU Tag Physical Page # 
1 3 1011 1100 
1 2 0111 0100 
1 1 1001 0110 
0 4 0000 ----- 

 
 
 
 
Initial Page Table State: 
 

 Valid Physical Page # 
0000 1 0101 
0001 0 Disk 
0010 0 Disk 
0011 1 0110 
0100 1 1001 
0101 1 1011 
0110 0 Disk 
0111 1 0100 
1000 0 Disk 
1001 0 Disk 
1010 1 0011 
1011 1 1100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Question A:  (15 points) – You must use these tables to answer this question! 
Given the virtual addresses above, show how the state of the TLB changes by filling in the tables: 
 
Address 1:  
 

1 0000 1111 1111 1111 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 
 
Address 2:  
 

2 0111 1010 0010 1000 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 
 
Address 3:  
 

3 0011 1101 1010 1101 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 
 
Address 4:  
 

4 0011 1010 1001 1000 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 



Address 5:  
 

5 0001 1100 0001 1001 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 
 
Address 6:  
 

6 0001 0000 0000 0000 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 
 
Address 7:  
 

7 0010 0010 1101 0000 
 

Valid LRU Tag Physical Page # 
    
    
    
    

 
 This reference is a: 
 
 
Question B: (10 points) 
What would some of the advantages of having a larger page size be?  What are some of the 
disadvantages? 
 
 
 
Question C: (5 points) 
Given the parameters in the table above, calculate the total page table size in a system running 5 
applications. 
 

Virtual Address Size Page Size Page Table Entry Size 
64 bits 16 KB 8 bytes 

 


