
CSE 30321 – Computer Architecture I – Fall 2010
Homework 08 – Multiprocessing

Assigned: November 30, 2010, Due: December 9, 2010, Total Points: 60

Problem 1: (20 points)
Youʼre trying to decide whether or not you should buy a laptop with a dual core processor or a single
core processor. The specs for each machine – and benchmark data – are listed below.

To execute your application of choice on the 2 GHz dual core machine, you will need to execute
2,000,000,000 total instructions:

- 60% of the instructions will run on Core 1
- 40% of the instructions will run on Core 2
- The instructions will run in parallel.

Of the instructions that run on Core 1:

- 20% are branch instructions
- 40% are ALU instructions
- 40% of the instructions reference memory.

Of the instructions that run on Core 2:
- 30% are branch instructions
- 40% are ALU instructions
- 30% of the instructions reference memory

On the dual core machine:

- A branch instruction requires 7 CCs to execute
- An ALU instruction requires 10 CCs to execute
- A memory reference instruction requires:

o 8 CCs if there is an L1 cache hit.
o 8 CCs + 14 more CCs if there is an L1 cache miss but data is found in the L2 cache
o 8 CCs + 14 CCs + 100 more CCs if the memory reference misses in L1 and L2.

On both cores, the L1 miss rate is 10% and the L2 miss rate is 7%

To execute your application of choice on the 2.5 GHz single core machine, you will need to execute
1,600,000,000 total instructions:

- 1/3rd of the instructions are branch instructions
- 1/3rd of the instructions are ALU instructions
- 1/3rd of the instructions reference memory.

On the single core machine:
- A branch instruction requires 6 CCs to execute
- An ALU instruction requires 6 CCs to execute
- A memory reference instruction requires:

o 8 CCs if there is an L1 cache hit.
o 8 CCs + 14 more CCs if there is an L1 cache miss but data is found in the L2 cache
o 8 CCs + 14 CCs + 150 more CCs if the memory reference misses in L1 and L2.

- The L1 miss rate is 15% and the L2 miss rate is 2%

For this benchmark suite, which processor is better? Why?

Problem 2: (10 points)
Assume that different processor cores are connected via an on-chip ring network (see below).

- Note: Circles are routers, squares (with letters) are cores

Part A: (5 points)
How long does it take to send a 140-bit message from terminal
node A to terminal node D?

Assume that the time required to traverse a router is 2 CCs, and
that it takes 1 CC to traverse the distance between routers.
Assume that there are 64 bits of available bandwidth between
terminals.

Part B: (5 points)
Assume that all 8 cores are working in conjunction to solve a problem.

- The amount of computation (not “overhead”) associated with the job that each core must do
requires 100,000 CCs per core

- Each core must send 500 messages to a core 4 routers away (use the number of clock cycles
calculated above) to facilitate parallelization.

- What speedup is obtained?
- What speedup is obtained if the communication overhead is the same, but each core instead

requires 500,000 CCs of computation per core?

Problem 3: (10 points)
Assume that you are running a program on a GPU similar to the NVIDIA GeForce 8 and/or GeForce
500 series. The GPU has:

o 16 multiprocessors (MPs)
o Each multiprocessor is composed of 16 streaming processors (SP).
o It is possible to execute just 1 floating point instruction / SP / clock cycle
o On average, the GPU achieves 85% of its peak performance

The GPU is supported by a memory:

o That is 2 GBytes
o That is 8 bytes wide – i.e. each can send 8 bytes / CC
o That operates at 1.2 GHz

Each floating point operation on average needs 6 bytes of data

Question A: (5 points)
To supply the processor with needed data, how should the memory be organized?

Question B: (5 points)
Recall from Lecture 23, I noted that common Byte:FLOP ratios for supercomputing applications include:
1 byte:1 FLOP and 0.3 bytes:1 FLOP. How would your answer to Part A change given these ratios?

A B C

D H

E F G

Problem 4: (20 points)
Consider the multiprocessor cache and memory state shown in the tables below:

CACHES
P0:
Block Number Coherence State Address Tag Data
Block 0 I 100 00 10
Block 1 S 108 00 08
Block 2 M 110 00 30
Block 3 I 118 00 10

P1:
Block Number Coherence State Address Tag Data
Block 0 I 100 00 10
Block 1 M 128 00 68
Block 2 I 110 00 10
Block 3 S 118 00 18

…

P7:
Block Number Coherence State Address Tag Data
Block 0 S 120 00 20
Block 1 S 108 00 08
Block 2 I 110 00 10
Block 3 I 118 00 10

MEMORY

Address Data
100 00 00
108 00 08
110 00 10
118 00 18
120 00 20
128 00 28
130 00 30

Each part of this exercise specifies a sequence of one or more CPU operations in the form:
 P#: <op> <address> [ <value>]

Here:
 “P#” designates the CPU number (e.g. P0)
 “<op>” is the CPU operation (e.g. read or write)
 “<address>” denotes the memory address
 “<value>” indicates the new word to be assigned on a write operation

Question A: (15 points)
Given the initial state shown above, what is the resulting state (i.e. coherence state, tags, and data)
of the caches and memory after the given action? Show only the blocks that change.

For example, “P0.B0: (I, 120, 00 || 01)” indicates that CPU POʼs block B0 has the final state of I, tag of
120, and data words 00 and 01.

Also, what value is returned by each read operation?

You should treat each part below independently (i.e. as you begin a new part, you should assume the
same, initial state).

Part 1:
p0: read 100
p0: write 100  40:

Part 2:
p0: read 120
p0: write 120  60

Part 3:
p0: read 100
p0: write 100  60
p1: write 100  40

Question B: (5 points)
Based on your answers to Question A, what are the total stall cycles for each part?

You should assume the following latencies:

Parameter Latency (CCs)
Memory 100
Cache 70
Invalidate 15
Write back 10

Part 1:
p0: read 100
p0: write 100  40

Part 2:
p0: read 120
p0: write 120  60

Part 3:
p0: read 100
p0: write 100  60
p1: write 100  40

