
CSE 30321 –  Computer Architecture I – Fall 2010 
Lab 03: Datapath Design and Pipelining 
Total Points: 100 points 
Assigned:   October 5, 2010 
Due:    October 28, 2010 

 
1. Goals and Description 
The questions associated with this lab touch on 3 of the 6 course goals (to be discussed below). 
 
There are 3 main components to this lab: 

o The first component will consider the correlations between instruction encodings and datapath 
hardware. You have already seen (for MIPS and the 6-instruction ISA) what an encoding tells 
you about the hardware available to execute the instruction.  In Part 1 of this lab, youʼll be given 
encodings for sample ARM instructions, and will be asked to describe the datapath based on 
these encodings. 

o This is directly related to course goal #1 – i.e. “Describe the fundamental parts of a 
microprocessor, how they interact with each other, etc.” 

o The second component is directly related to course goals #2 and #5 – i.e. (#2) “applying 
knowledge about a processorʼs datapath and performance metrics to design a machine so it 
meets a target set of performance goals”, and (#5) “using knowledge about underlying hardware 
to write more efficient software”.  More specifically, you will be asked to augment the multi-cycle 
MIPS datapath to support a new addressing mode (to be discussed further below), and will also 
consider how new addressing modes could be used to speedup common software routines. 

o Finally, the third component will consider the importance of predicting the outcome of a branch 
instruction in a pipelined datapath. If a pipeline is required to stall until the outcome of a branch 
instruction is known, there will be a significant (and negative) impact on performance. 

o This is directly related to course goal #2. 
 
2. Datapath Design and Instruction Encodings 
During Lectures 2 and 3 (for the 6-instruciton ISA) and Lecture 10 (for the MIPS ISA), we discussed 
how, by looking at an instruction encoding, you could learn a lot about the capabilities of the datapath 
used to execute a given instruction.  For example, in Figure 1, Iʼve included snapshots of the Lecture 10 
slides that illustrate the MIPS R-type and I-type arithmetic instructions.  Looking at the I-type slide, you 
can see that the 6-bit opcode allows you to specify at least 26 (or 64) unique instructions. 
 

         
 
Figure 1:  Example MIPS R-type and I-type (arithmetic) encodings. 
 



In Figure 2 below, I have included the instruction encodings for 2 types of ARM instructions: 
o The first is an encoding for a 32-bit “register-immediate” instruction (i.e. 1 value is an immediate 

value like the I-Type MIPS). 
o The second is an encoding for a 16-bit instruction for ARMʼs “Thumb” ISA – where, quite simply, 

instruction encodings may be 16 bits instead of 32 bits. The 16-bit encoding shown in Figure 2 
is also for a “register-immediate” instruction. 

 

 
 
Figure 2:  Encodings for 32- and 16- bit ARM “register-immediate” instructions.  Note that “Opx” stands 
for opcode extension, “Op” stands for opcode, and “Const” stands for constant/immediate value.  “Rs” 
and “Rd” stand for register source and register destination respectively.  The superscripts denote the 
number of bits. 
 
Part 2.A: 
Describe the datapath, register file, instruction mnemoic, etc. associated with the ARM 32-bit and 16-bit 
register-immediate instruction encodings.  (I am not looking for a “user manual quality” description, but 
am interested in what hardware you think is available, the source and destination of the data used in 
the instruction, etc.) 
 
Part 2.B: 
Why do you think ARM released a 16-bit ISA?  What application spaces do you think 16-bit instructions 
map well to?  Why? 
 
3. Addressing Modes 
There are 5 different ways that MIPS instructions can address the register file OR memory.  As 
summarized on pages 132-133 of your textbook, the MIPS addressing modes are enumerated below, 
and illustrated graphically in Figure 3.  (The text and graphics here are from Hennessey and Patterson.) 
 

1. Immediate Addressing:  the operand is a constant within the instruction (i.e. addi $2, $3, 10) 
2. Register Addressing:  the operand is in a register (i.e. add $2, $3, $4) 
3. Base (or displacement) Addressing:  the operand is at the memory location whose address is 

the sum of a register and a constant in the instruction (i.e. like a lw or sw instruction) 
4. PC-relative Addressing:  the branch address is the sum of the PC and a constant in the 

instruction (i.e. like a beq instruction) 
5. Psuedo-direct Addressing:  the jump address is 26 bits of the instruction concatenated with the 

upper bits of the PC (i.e. like a j instruction) 
 
However, these are not the only ways that an instruction could address the register file or memory.  
Other common addressing modes used in other ISAs (as well as when they may be useful from a 
software perspective) are summarized in Table 1.  Notably, the ARM ISA may leverage the indexed, 
scaled, auto-increment, and auto-decrement addressing modes (among others).   
 
Part 3.A: 
Augment the MIPS multi-cycle datapath and finite state diagram to support the indexed addressing 
mode described above.  Note that: 

o I have posted copies of the datapath diagram and finite state diagram on the course website 
(the link is next to the Lab 03 handout link) 

o I strongly suggest that you follow the procedure/approach discussed in Lecture 12 



o  
 

o Figure 3:  Summary of MIPS addressing modes (from HP textbook). 
 
If helpful, you can assume the following: 

o The instruction encoding can be the same as the MIPS R-type (with the shamt and function 
code fields just ignored). 

o Your mnemonic / RTL might look like: 
o lw-index $x, $y, $z  # $x  Memory[$y + $z] 

 
 



Table 1:  Commonly used addressing modes.  (Shaded entries are used in MIPS) 
 

Addressing Mode Example 
Instruction 

Meaning When Used 

Register Add R4, R3 R4  R4 + R3 When a value is in a 
register 

Immediate Add R4, #3 R4  R4 + 3 For constants 
Displacement Add R4, 100(R1) R4  R4 + Mem[100+R1] Accessing local 

variables (for lw/sw) 
Register deferred or 

Indirect 
Add R4, (R1) R4  R4 + Mem[R1] Accessing/using pointer 

or computed address 
Indexed Add R3, (R1+R2) R3  R3 + Mem[R1+R2] Array addressing; R1 = 

base of array, R2 = 
index amount 

Direct or Absolute Add R1, (1001) R1  R1 + Mem[1001] Accessing static data; 
Address constant may 
need to be big 

Memory indirect or 
Memory deferred 

Add R1, @(R3) R1  R1 + Mem[Mem[R3]] If R3 is the address of a 
pointer p, then this mode 
yields *p 

Autoincrement Add R1, (R2)+ R1  R1+Mem[R2]; 
R2  R2 + d 

Useful for stepping 
through arrays within a 
loop; R2 points to start 
of array; each reference 
increments R2 by d 

Autodecrement Add R1, (R2)- R1  R1-Mem[R2]; 
R2  R2 + d 
 

Same as autoincrement; 
can be used for 
push/pop on stack 

Scaled Add R1, 100(R2), [R3] R1  R1 + Mem[100+R2+R3*d] Used to index arrays 
 
 
Part 3.B: 
In Lab 01, I described several different benchmark suites.  One benchmark suite that was mentioned 
(but not used) was LINPACK (described again in Table 2): 
 

Table 2:  Description of the LINPACK benchmark suite 

 
Thus, at the heart of the LINPACK benchmark suite is code that implements the operation: y = aX + y. 
 
As a computer architect, you have been tasked with improving the performance of this code.  Presently, 
you are running this code on a multi-cycle datapath where the array accesses and index counter 
updates are very MIPS-like.  In other words, an add instruction would be used to update the array 
index/loop counter, and separate load and store instructions are needed to access array elements.   
 
 

                                                 
1 text from:   http://en.wikipedia.org/wiki/LINPACK 

LINPACK 
The LINPACK benchmark suite might be used if you were designing an architecture for a high-performance 
computing system (i.e. something that might be used for weather/climate modeling). “LINPACK is a software 
library for performing numerical linear algebra on digital computers. The LINPACK Benchmarks are a measure 
of a system's floating point computing power. Introduced by Jack Dongarra, they measure how fast a 
computer solves a dense N by N system of linear equations Ax = b, which is a common task in engineering.”1 



Thus, the assembly language might look something like: 
 
 Loop:  load R3, 0(R1) # load x[j] 
   mult R4, R3, R7 # multiply a*x[j]; assumes a maps to R7 
   load R5, 0(R2) # load y[i] 
   add  R5, R4, R5 # add a*X[j] + y[i] 
   store R5, 0(R2) # store y[i] 
   addi R1, R1, 4 # increment X index 
   addi  R2, R2, 4 # increment Y index 
   bneq z, R2, Loop # start loop again if condition not met (z is # of iterations) 
 
The processor datapath that you are designing is specifically targeted to run code similar to that of the 
LINPACK benchmark suite.  As such, reducing the execution time of code like that shown above is 
important.  One option that you are considering is adding new instructions – store++ and load++ – that 
will automatically update the base register by 4.   
 
Part 3.B.i: 
If store++ and load++ are implemented, what instructions in the above loop could be changed, and 
what instructions could be eliminated? 
 
Part 3.B.ii: 
Assume that you are working with a multi-cycle datapath, and the number of clock cycles for each 
instruction is as shown in Table 3 below.  For a 100,000 iteration loop, how many clock cycles are 
saved? 
 

Table 3:  Assumed Cycles Per Instruction for Problem 3.B (Part 2) 
 

Instruction Clock Cycles Required 
load 7 
mult 8 
add 5 
store 6 
addi 5 
bneq 4 
load++ 8 
store++ 7 

 
4. Branch Prediction and Pipelining 
As you have seen in lecture, predicting the outcome of a branch instruction is of the utmost importance 
when moving to a pipelined datapath.  On average, every 6th instruction will be some kind of a branch.  
Using the 5-stage MIPS pipeline as context (and assuming that 3 clock cycles are required to fetch the 
instruction, decode the instruction, and test to see whether or not the branch condition is met), as seen 
in Lecture 13, branch instructions can significantly degrade the ideal CPI associated with pipelining (i.e. 
1). 
 
To try to mitigate the negative effects that branch instructions can have on a pipelined datapath, it is 
actually quite common to predict the outcome of a branch instruction (i.e. what instruction should be 
fetched next) and start it down the pipeline.  There are several approaches that one could take (aside 
from simply stalling the pipeline). 
 
 



1. We could always predict that branch will NOT be taken – so the next instruction that will be 
fetched and started down the pipeline is just at PC + 4.  In a sense, this is a better option than 
just stalling the pipeline.  If we assume that 50% of the time a branch is taken, and 50% of the 
time a branch is not taken, at least one half of the time, weʼll be starting useful work – and for 
the other half of the time, the impact on the performance of the pipelined datapath will be no 
worse than if we just stalled the pipeline! 
 

2. Alternatively, we could predict that the branch will be taken.  However, this is a harder decision 
to implement – as the new target address will not be calculated until the second clock cycle of 
the branch instruction at the earliest.  So, as a branch instruction moves from the fetch stage to 
the decode stage of the pipeline, we will not yet have calculated a new address to “fetch” from. 
 

3. The third approach involves keeping a “selective history” of all instructions that are executed.  
This “history” can be referenced during the fetch stage of the pipeline.  Essentially, every time 
there is a branch instruction, the address of the PC (and the outcome of the branch / new PC 
value) is recorded in a table. If the table suggests that the current instruction being fetched is a 
branch, there are 2 possible outcomes: 

a. The table predicts that the branch should not be taken – and the next instruction fetched 
will just be from PC + 4. 

b. The table predicts that the branch will be taken – and the next instruction fetched will be 
from the PC value listed in the table. 

 
Graphically, this process is illustrated in Figure 4.  Note that a modern desktop or high-
performance processor will almost certainly involve a sophisticated “branch predictor” and 
successful prediction rates of ~95% are common.  To learn more about a simple (yet reasonably 
accurate) predictor, see pages 380-381 of your textbook. 

 

 
 
Figure 4:  Graphical view of branch prediction. 
 
Part 4.A: 
You can change the branch prediction mechanism in a SimpleScalar simulation to see how different 
branch prediction methods impact performance.  (The datapaths that you worked with in Lab 01 are 
pipelined, so there is a good mapping to the simulations you did for Lab 01 and this problem.)  Here, 
you will need to look at how four different “prediction” options impact the MP3 encode/decode 
benchmarks and the ispell benchmark.  You should consider larger and small datasets.  The options 
that we will consider include: 
 

1. Predicting that the branch is Not Taken 
o (So, in other words, we just fetch the next instruction.) 

2. Predicting that the branch is Not Taken and there is a branch mis-prediction latency of 3 CCs. 



o (This is the easiest way to make SimpleScalar mimic the “always stall” case.) 
3. Assuming perfect branch prediction 

o (For this option, every branch is correctly predicted; again, this is practically impossible – 
but is a useful simulation option to have as it allows you to quantify the impact that mis-
predicted branches have on a pipelined datapath.) 

4. Assuming a bimodal branch predictor 
o (While slightly more sophisticated, this predictor is similar to the 2-bit predictor described 

on pages 380-381 of your textbook.  You do not need to know the exact details in order 
to complete this part of the lab.) 

 
Using the XScale configuration file, use SimpleScalar to complete Table 42: 
 

Table 4:  Execution time of Lame and Mad assuming different branch prediction schemes. 
 

 Execution Time 
(Predict Not Taken) 

Execution Time 
(“Always Stall”) 

Execution Time 
(Perfect) 

Execution Time 
(Bimodal) 

Lame 
(small input) 

    

Lame 
(large input) 

    

Mad 
(small input) 

    

Mad 
(large input) 

    

ispell 
(small input) 

    

ispell 
(large input) 

    

 
(to calculate execution time, you can assume that the clock rate of the processor is 233 MHz) 
 
Part 4.B: 
Quantitatively, how does branch prediction affect speedup?  Do you think the bimodal predictor does a 
good job? 
 
5. What to Turn In 
You should turn in a typed report with answers to: 

- Parts 2.A and 2.B 
- Parts 3.A, 3.B.i, and 3.B.ii 
- Parts 4.A and 4.B 

 
I expect that datapath modifications and state machine diagrams should be neatly drawn (or done with 
powerpoint) so that changes are easy to follow. 
 
 
 
 
 

                                                 
2 See Appendix for explanation of how to run benchmarks. 



Appendix 
To run a benchmark with a different branch predictor, simply edit the following line in the configuration 
file: 
 

# branch predictor type {nottaken|taken|perfect|bimod|2lev} 
-bpred                        bimod 

 
Thus, to run the benchmark assuming that braches are not taken, simply change “bimod” in the second 
line to “nottaken”.  (Similarly, to run a benchmark assuming that all branches are taken or all predictions 
are perectly made, just change “bimod” to “taken” or “perfect” respectively.) 
 
To mimic the “always stall” case, simply edit the following line… 
 
 # extra branch mis-prediction latency 

-fetch:mplat                      0 
 
…by changing “0” to “3”. 


