
Name:__________________________

CSE 30321 – Computer Architecture I – Fall 2009
Midterm Exam

October 15, 2009

Test Guidelines:

1. Place your name on ***EACH*** page of the test in the space provided.
2. Answer every question in the space provided. If separate sheets are needed, make sure to

include your name and clearly identify the problem being solved.
3. Read each question carefully. Ask questions if anything needs to be clarified.
4. The exam is open book and open notes.
5. All other points of the ND Honor Code apply. By writing your name on the exam, you agree to

abide by the ND Honor Code.
6. Upon completion, please turn in the test and any scratch paper that you used.

Suggestion:

- Whenever possible, show your work and your thought process. This will make it easier for us to
give you partial credit.

Question

Possible Points Your Points

1

30

2

15

3

15

4

20

5

20

Total

100

Name:__________________________

Problem 1: (30 points)

The following question is based on the extended Vahid processor that you have worked with in class
and/or lab. For your convenience, (i) the instructions, (ii) their opcodes, and (iii) the finite state machine
(FSM) are all shown below. You can assume that R0 is always equal to 0. Also – there is no need
to take “wait states” into account as was done in the lab.

Question A(i): (10 points)
Write a sequence of Vahid instructions that is equivalent to the following pseudo code. Be sure to add
a comment by each line of your code so that we can follow your thought process and give partial credit
where possible.

 i = 2; // i maps to R2
 j = 3; // j maps to R3

 k = i + j; // k maps to R5

 if (i == 6)
 x = D[1]; // x maps to R8
 else
 x = D[2]; // x maps to R8

 y = D[3]; // y maps to R7

Name:__________________________

Question A(ii): (5 points)
Given the data supplied in Part A(i), what is the CPI for your code?

Name:__________________________

Question B(i): (10 points)
Explain what the sequence of Vahid instructions in the table below ultimately accomplishes.

- Note 1:
o Psuedo-code is fine, just donʼt translate instruction-by-instruction. Instead, summarize at

some higher level (e.g. “while (n < 17) …”)
- Note 2:

o This code includes a “jump-if-negative” instruction – where the PC will change if the
register value is negative. It is executed just like the “jump if zero” instruction.

- Note 3:
o There is space in the table below for comments. I will look at anything you write here

when considering partial credit.

Address Label Instruction / Data Comment
… …
10 mov R5, 10constant
11 mov R6, 6constant
12 mov R8, 8constant
13 sub R7, R5, R6
14 jumpn R7, end
15 mov R2, 18address
16 add R3, R2, R8
17 mov 18address, R3
18 end: mov R5, 30address
… …
30 data word 1
31 data word 2
32 data word 3
… …
N data word N

Question B(ii): (5 points)
In what clock cycle(s) does R5 change state? (i.e. when does the value of R5 change?) Assume the
instruction at address 10 is fetched in clock cycle 1.

Name:__________________________

Problem 2: (15 points)

Translate the following pseudo code to MIPS assembly. Please use the table below – and again, add
comments so that we can give you partial credit if needed.

if (x == 1) {
 j = 4;
 }
 else if (x == 2) {
 j = 7;
 }
 else {
 j = 11;
 }
 array(j) = b(3)

Assume the following:

- The starting address of b(0) is stored in $3
- The starting address of array(0) is stored in $2
- Assume x maps to $12
- Assume j maps to $22

Note: You do not need to use all of the rows.

Label: Instruction: Comment:

Name:__________________________

Extra table:

Label: Instruction: Comment:

Name:__________________________

Problem 3: (15 points)
For this question, assume that the processor you are working with executes different instruction types in
integer numbers of short clock cycles (i.e. a multi-cycle approach). The machineʼs clock rate is 1 GHz
and 50,000,000 instructions are executed. The profile of a common workload is shown below:

 Instruction Type Percentage Number of CCs
A Load 20% 6
B Store 10% 5
C Integer ALU 15% 5
D Floating Point ALU 30% 10
E Branch 15% 5
F Jump 10% 4

Question A: (10 points)
You are considering 3 potential improvements to improve the performance of this workload.

1. You can spend time improving the compiler. This will reduce the total instruction count from
50,000,000 to 40,000,000. You can assume that the above percentages will still hold.

2. You can improve the clock rate from 1 GHz to 1.25 GHz. However, each instruction will take 1
CC longer to execute.

3. You can keep the instruction count and the clock rate the same, but reduce the number CCs per
floating point instruction from 10 to 5.

Which option is best?

Question B: (5 points)
What is the speedup over the base case?

Name:__________________________

Problem 4: (20 points)
A simplified version of a MIPS finite state machine (for a multi-cycle processor) is shown below:

The clock rate for this machine is 1 GHz.

Question A: (10 points)
How long will it take to execute the for loop instruction sequence shown below?

 assume $10 = 40 and $5 = 0

 loop: lw $4, 0($5)
 sll $4, $4, 2
 sw $4, 0($5)
 addi $5, $5, 4
 bne $5, $10, loop
 end:

Name:__________________________

Question B: (10 points)
Assume that you can add a new instruction called “store word auto-increment” which also takes 4 CCs.
This instruction is the same as the normal “store” instruction that you have used to date, except that by
the end of the instruction, the register used to calculate the address is incremented by 4. Thus:

Assembly: sw-ai $5, 0($4)
RTL: $5 memory(0 + contents of $4) || $4 $4 + 4

Note, the value of $4 used in the address calculation is the previous value of $4, not $4 + 4.

While this instruction will reduce the number of instructions in the above loop, because the new
instruction will need to do more computation, the clock period could increase. How much of a “slow
down” can we tolerate for the above code if we used the new instruction?

Bonus Question: (3 points)
Will the MIPS multi-cycle datapath need to be modified to support this new instruction? If so, how?

Name:__________________________

Problem 5: (20 points)

Question A: (5 points)
Consider the following snippet of code:

int main(void) {
 int A = 1; // A maps to $ t1
 int B = 2; // B maps to $ s1
 int C = 3: // C maps to $ s2

 ….

 printf(“B is equal to %d.”, B);

 B = C + C;
}

When the printf() function is called, per the MIPS calling convention, what registers are saved and
where are they saved? Briefly justify your answer for full/partial credit.

Question B: (5 points)
Consider the slightly modified version of the above code shown below. What registers ***need*** to be
saved to the stack? Per the MIPS calling convention, how would this be accomplished?

int do_anything();

int main(void) {
 int A = 1; // A maps to $ t1

int B = 1; // B maps to $ s1
 int C = 2; // C maps to $ s2
 int D = 2; // D maps to $ t2
 int X;

 …

 X = do_anything();

 B = C + C;
 A = A + D + B;
}

Name:__________________________

Question C: (5 points)
Consider the code shown below. Assuming that no other functions are called in this sequence, what is
the value of $s1 (a) immediately before the call to “do_something2()” and (b) immediately before the
statement “X = Y – Z”?

int main(void) {

int B = 1; // B maps to $ s1
 int C = 2; // C maps to $ s2

 …

 do_something1();

 B = B + C;
}

int do_something1() {
 int P = 3; // P maps to $ s3
 int Q = 4; // Q maps to $ s4
 int R // R maps to $ s5

 R = P + Q;

 do_something2();
}

int do_something2() {
 int X = 6; // X maps to $ s6
 int Y = 7; // Y maps to $ s7
 int Z // Z maps to $ s8

 X = Y - Z;
}

Question D: (5 points)
Assume $sp initially = 200. What is the value of the $sp if 3 function calls are made and 3 data words
must be saved to the stack for each call?

