
CSE 30321 – Lecture 04 – In Class Example Handout 
 
Part A:   An Initial CPU Time Example 
 
Question 1: 
 
Preface: 
We can modify the datapath from Lecture 02-03 of the 3-instruction 
processor to add an instruction that performs an ALU operation on any 
two memory locations and stores the result in a register file location.   
 
(We would need to add 2 multiplexers – ALU_Mux1 and ALU_Mux2 – to 
the inputs to the ALU to select between an input from the register file and 
an input from data memory.) 
 
Note that if we wanted to perform the operation d(4) = d(5) + d(6) + d(7) 
with the old datapath (i.e. before the enhancement) we would need a 
total of 6 instructions.  However, with the new datapath, we would only 
need 4 instructions: 
 
  Un-enhanced Solution:  Enhanced Solution: 
  MOV R1, d(5)   Add R1, d(5), d(6)     
  MOV R2, d(6)   MOV R2, d(7) 
  MOV R3, d(7)   Add R3, R1, R2 
  Add R4, R1, R2   MOV d(4), R3 
  Add R5, R4, R3    

 MOV d(4), R5 
 
From the standpoint of instruction count alone, the enhanced solution looks better.  But is it? 

 
Part A: 
Assume that each instruction really does just take 3 CCs to execute (1 each for fetch, decode, and 
execute).  Also, assume that clock rates of both 5 MHz and 10 MHz are possible.  Calculate the CPU 
time of the un-enhanced and enhanced design assuming the 2 different clock rates.  What is the 
potential “swing” in performance? 
 
We can start with the CPU time formula – remember that execution time is the best metric… 
 

 CPU Time = 

€ 

instructions
program

×
cycles

instruction
×
seconds
cycles

 

 
Time (un-enhanced, 5 MHz)   = (6)(3)(2 x 10-7) = 3.6 x 10-6 s 
Time (un-enhanced, 10 MHz)  = (6)(3)(1 x 10-7) = 1.8 x 10-6 s 

- (above is easy to compare; instruction count, CPI are constants) 
 

Time (enhanced, 5 MHz)  = (4)(3)(2 x 10-7) = 2.4 x 10-6 s 
- (comparing this to the un-enhanced, 10 MHz version – its better to improve clock rate) 

 
Time (enhanced, 10 MHz)  = (4)(3)(1 x 10-7) = 1.2 x 10-6 s 

- (faster clock rate, fewer instructions = best) 



Part B: 
In reality, an instruction that requires a memory reference will require more clock cycles than an 
instruction that operates on data thatʼs just in registers.  If the new ADD instruction requires 5 clock 
cycles, what is the average CPI for the different instruction mixes shown above? 
 

- Here, need to take into account % of instructions with different CCs 
 

- For un-enhanced, easy: 100% x (3) = 3 CCs/instruction 
 

- For enhanced, we can see that 1 instruction out of 4 requires 5 CCs 
 

o Therefore (0.75)(3) + (0.25)(5) = 3.5 CCs/instruction 
 

- Note, CPI not as good (3.5 vs. 3.0) 
 

o So, whatʼs the advantage?  Enhanced version uses fewer instructions… 
 
 
 
 
Part C: 
Repeat Part A given the assumptions of Part B.  
 
Time (un-enhanced, 5 MHz) – still (3.6 x 10-6 s) 
Time (un-enhanced, 10 MHz) – still (1.8 x 10-6 s) 
 
Time (enhanced, 5 MHz) – (4 instructions) x (3.5 CC / instruction) x (2.0 x 10-7 s) = 2.8 x 10-6 s 

- Compare to last time – (2.4 x 10-6 s) 
- Therefore, with greater CPI, enhanced version is ~16% slower! 

o Although still better… 
 
Time (enhanced, 10 MHz) – (4 instructions) x (3.5 CC / instruction) x (1.0 x 10-7 s) = 1.4 x 10-6 s 
 
Things add up fast! 

- Before: 
o Time (un-enenhanced, 10 MHz) = 1.8 x 10-6 s 
o Time (enhanced, 10 MHz) = 1.2 x 10-6 s 
o 50 % speedup 

- After: 
o Time (un-enenhanced, 10 MHz) = 1.8 x 10-6 s 
o Time (enhanced, 10 MHz) = 1.4 x 10-6 s 
o 28.5% speedup! 

 
 
 
 
 
 
 
 
 



Question 2: 
You are given two implementations of the same Instruction Set Architecture (ISA): 
 

Machine Cycle Time CPI 
A 10 ns 2.0 
B 20 ns 1.2 

 
Part A: 
What does “two implementations of the same ISA” really mean anyway? 

- Instruction count will be the same 
- Hence, possible instructions to translate code to is the same on both machines 

o Therefore only one way to do i++ for example 
 

- Then, how can CPI be different? 
o 1 example: 

 memory-to-register (load); path from M  R = 2 CCs or 1 CC 
 HW / organization based – see Venn diagram 

 
Part B: 
Which machine is faster?  By how much? 

- ta = n x 2.0 x 10 ns = 20(n) ns 
- tb = n x 1.2 x 20 ns = 24(n) ns 
 
(24 / 20 = 1.2X faster) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part B:   The Impact of the Compiler 
 
Question 1: 
A compiler designer is trying to decide between two code sequences for a particular machine.  The 
machine supports three classes of instructions:  A, B, and C.   
 
(Note A might be ALU instructions – like Adds, B might be Jumps, and C might be Loads and Stores). 
 

- Class A takes 1 clock cycle to execute 
- Class B takes 2 clock cycles to execute 
- Class C takes 3 clock cycles to execute 

 
We now have two sequences of instructions made up of Class A, B, and C instructions respectively. 
 
Letʼs assume that: 

- Sequence 1 contains:  200 Aʼs, 100 Bʼs, and 200 Cʼs 
- Sequence 2 contains:  400 Aʼs, 100 Bʼs, and 100 Cʼs 

 
Questions: 

- Which sequence is faster? 
- By how much? 
- What is the CPI of each? 

 

Recall CPU Time = 

€ 

instructions
program

×
cycles

instruction
×
seconds
cycles

 

 
- No information give about clock rate – therefore, we can assume its X 
- Instructions / program (sequence 1) = 500 
- Instructions / program (sequence 2) = 600 

 
Whatʼs the CPI? 
 
CPI (Seq 1)  = (200/500)(1) + (100/500)(2) + (200/500)(3) 
  = (0.4 x 1) + (0.2 x 2) + (0.4 x 3) 
  = 2 
 
CPI (Seq 2) = (400/600)(1) + (100/600)(2) + (100/600)(3) 
  = ((2/3) x 1) + ((1/6) x 2) + ((1/6) x 3) 
  = 1.5 
 
Time (1)  = 500 x 2 x X   = 1000X 
Time (2) = 600 x 1.5 x X = 900X 
 
Therefore, 1000X/900X = 1.11 X faster 
 
 
 
 
 
 



Part C:   Bad Benchmarks 
 
Question 1: 
Two compilers are being tested for a 100 MHz machine with 3 classes of instructions A, B, and C – 
again, requiring 1, 2, and 3 clock cycles respectively. 
 

Compiler A B C Cycles 
1 5 M 1 M 1 M 10 M 
2 10 M 1 M 1 M 15 M 

 
Which sequence will produce more millions of instructions per clock cycle (MIPS)? 
 
Seq 1 – Millions instructions/s = (5M + 1M + 1M) / (10x106 cycles x 1x10-8 s/CC) 
     = 7M / 0.1 
     =  70 M instructions/s 
 
Seq 2 – Millions instructions/s = (10M + 1M + 1M) / (15x106 cycles x 1x10-8 s/CC) 
     = 8M / 0.1 
     =  80 M instructions/s 
 
Is sequence 2 seemingly better? 
 
Which sequence is faster? 
 
CPU (time Seq 1) = (7x106 inst) x ((5/7)(1) + (1/7)(2) + (1/7)(3)) = 0.1 s 
 
CPU (time Seq 2) = (12x106 inst) x ((10/12)(1) + (1/12)(2) + (1/12)(3)) = 0.15 s! 
 
More MIPS, more time – Sequence 1 has a “better use” of executed instructions… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part D:   Other Examples 
 
Question 1: 
Letʼs assume that we have a CPU that executes the following mix of instructions: 

- 43% are ALU operations (i.e. adds, subtracts, etc.) that take 1 CC 
- 21% are Load instructions (i.e. that bring data from memory to a register) that take 1 CC 
- 12% are Store instructions (i.e. that write data in a register to memory) that take 2 CCs 
- 24% are Jump instructions (i.e. that help to implement conditionals, etc.) that take 2 CCs 

 
What happens if we implement 1 CC stores at the expense of a 15% slower clock? 
 
Is this change a good idea? 
 
CPU time (v1): 
 = (# of instructions) x ((0.43*1) + (0.21*1) + (0.12*2) + (0.24*2)) x (clock) 
 = I x (1.36) x clock 
 
CPU time (v2): 
 = (# of instructions) x ((0.43*1) + (0.21*1) + (0.12*1) + (0.24*2)) x (clock x 1.15) 
 = I x (1.24) x (1.15 x clock) 
 = I x 1.426 x clock 
 
v2 is 1.426 / 1.36 = ~5% slower 
 
Question 2: 
Assume that you have the following mix of instructions with average CPIs: 
 

 % of Mix Average CPI 
ALU 47% 6.7 
Load 19% 7.9 
Branch 20% 5.0 
Store 14% 7.1 

 
The clock rate for this machine is 1 GHz. 
 
You want to improve the performance of this machine, and are considering redesigning your multiplier 
to reduce the average CPI of multiply instructions.  (Digress – why do multiplies take longer than adds?)  
If you make this change, the CPI of multiply instructions would drop to 6 (from 8).  The percentage of 
ALU instructions that are multiply instructions is 23%.  How much will performance improve by? 
 
Class “todo” – first, need to calculate a basis for comparison: 

- Let the number of instructions = I 
o (Weʼre only changing the HW, not the code so the number of instructions per program 

will remain constant.) 
 
Then, the CPI for this instruction mix is:  
 
CPIavg    =  (0.47)(6.7) + (.19)(7.9) + (.2)(5) + (.14)(7.1) 
   = 3.15 + 1.5 + 1 + 1 
   =  6.65 



 
CPU Time (base) = I x 6.65 x (1x10-9) 
   =  6.65 x 10-9(I) 
 
Next… 

- To evaluate the impact of the new multiplier, we need to calculate a new average CPI for ALU 
instructions 

 
We know that the OLD ALU CPI is: 
 
CPI (ALU-old)  = (0.23)(multiply) + (0.77)(non-multiply) 
6.7   = (0.23)(8) + (0.77)(non-multiply) 
We can solve for (non-multiply) – which equals 6.31. 
 
Now, we can calculate a new ALU CPI: 
 
CPI (ALU-new)  = (0.23)(multiply) + (0.77)(non-multiply) 

  = (0.23)(6) + (0.77)(6.31) 
   = 6.24 
 
Finally…  we can calculate a new CPI and CPU time: 
 
CPInew    =  (0.47)(6.24) + (.19)(7.9) + (.2)(5) + (.14)(7.1) 
   = 2.68 + 1.5 + 1 + 1 
   =  6.41 
 
CPU Time (new)  = I x 6.41 x (1x10-9) 
   =  6.41 x 10-9(I) 
 
The speedup with the new multiplier is then: 6.65 / 6.41 – or 3.7% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part E:   Amdahlʼs Law Examples 
 
Question 1: 
Consider 4 potential applications of the Amdhalʼs Law Formula: 

1. 95% of a task/program/etc. is improved by 10% 
2. 5% of a task/program/etc. is improved by 10X 
3. 5% of a task/program/etc. is infinitely improved 
4. 95% of a task/program/etc. is infinitely improved 

 
For all 4 cases, what is the overall speedup of the task? 

Recall Amdahlʼs Law Formula: 

€ 

Speedup =
1

(1− fenhanced)+
fenhanced

speedupenhanced

 

Case 1: 

€ 

Speedup =
1

(1−0.95)+ 0.95
1.1

 

 

 
 
 

 

 

 
 
 

= 1.094  

 
- Here, there is a 9.4% speedup. 
- Because the enhancement does not affect the whole program, we donʼt get 10% – but because 

itʼs widely applied, we get close. 
 
Case 2: 

€ 

Speedup =
1

(1−0.05)+ 0.05
10

 

 

 
 
 

 

 

 
 
 

= 1.047  

 
- Here, there is a 4.7% speedup. 
- Because the enhancement is limited in scope, there is limited improvement. 

 
Case 3: 

€ 

Speedup =
1

(1−0.05)+ 0.05
∞

 

 

 
 
 

 

 

 
 
 

= 1.052  

 
- Here, there is a 5.2% speedup. 
- Same as Case 3.  Because the enhancement is limited in scope, there is limited improvement. 

 
Case 4: 

€ 

Speedup =
1

(1−0.95)+ 0.95
∞

 

 

 
 
 

 

 

 
 
 

= 20   

 
- Only if enhancement almost everywhere do you see big speedup – and then only 20X! 
- (If 1,000,000 – still see about 20X – therefore “lose” 50,000X of improvement) 



Question 2: 
Letʼs suppose that we have 2 design options to choose from: 
 

1. We can make part of a task 20X faster than it was before; this part of the task constitutes 10% 
of the overall task time. 

2. We can make 85% of the task 1.2X faster. 
 
Part A: 
Which is better? 
 
To answer, we need to calculate 2 parameters: 

1. % of task that will run faster / how much faster it will run 
2. Part of task that will be the same as before 

 
 (i) (ii) (i) + (ii) 
Case 1 

€ 

0.1
20

= 0.005  (1-0.1) .005 + 0.9 = 0.905 

Case 2 

€ 

0.85
1.2

= 0.708  (1-0.85) 0.708 + 0.15 = 0.858 

 Think of this column 
as the new component 
of execution time 

This is the part of the 
task that takes the 
same as before. 

 

 
Can then divide normalized old execution time by the result to get speedup: 
 

For Case 1: 

€ 

1
0.905

= 1.105 = 10.5%  

 

For Case 2: 

€ 

1
0.858

= 1.166 = 16.5%  

 
Therefore Case 2 is better – hint – b/c it improves almost everything 
 
 
 
Part B: 
Question – how much / what % of code must be sped up by 20X to match performance of Case 2? 
 
 

€ 

1.165 =
1

(1− fractionenhanced)+
fractionenhanced

20

 

 

 
 
 

 

 

 
 
 
 

 
If we solve for fractionenhanced, we get 0.149 – i.e. 14.9% of the code/task must run 20X faster instead of 
10%. 
 
 
 
 



Part C: 
Question – What if only 10% of our task can be sped up?  How much faster would we have to make it? 
 

€ 

1.165 =
1

(1−0.10)+ 0.1
Speedup

 

 

 
 
  

 

 

 
 
  
 

 
If solve for speedup, we see: 
 
1.165 x [ (1-0.1) + (0.1/x) ]  = 1 
1.165 x [ (0.9) + (0.1/x) ] = 1 
1.0485 + (0.1165 / x)  =  1 
0.1165 / x   = -0.0485 
 
x    = -2.4 
 
(negative number means not possible!) 
 
 
 
 
 
 
 
 
 


