
CSE 30321 – Lecture 04 – In Class Example Handout

Part A: An Initial CPU Time Example

Question 1:

Preface:
We can modify the datapath from Lecture 02-03 of the 3-instruction
processor to add an instruction that performs an ALU operation on any
two memory locations and stores the result in a register file location.

(We would need to add 2 multiplexers – ALU_Mux1 and ALU_Mux2 – to
the inputs to the ALU to select between an input from the register file and
an input from data memory.)

Note that if we wanted to perform the operation d(4) = d(5) + d(6) + d(7)
with the old datapath (i.e. before the enhancement) we would need a
total of 6 instructions. However, with the new datapath, we would only
need 4 instructions:

 Un-enhanced Solution: Enhanced Solution:
 MOV R1, d(5) Add R1, d(5), d(6)
 MOV R2, d(6) MOV R2, d(7)
 MOV R3, d(7) Add R3, R1, R2
 Add R4, R1, R2 MOV d(4), R3
 Add R5, R4, R3

 MOV d(4), R5

From the standpoint of instruction count alone, the enhanced solution looks better. But is it?

Part A:
Assume that each instruction really does just take 3 CCs to execute (1 each for fetch, decode, and
execute). Also, assume that clock rates of both 5 MHz and 10 MHz are possible. Calculate the CPU
time of the un-enhanced and enhanced design assuming the 2 different clock rates. What is the
potential “swing” in performance?

We can start with the CPU time formula – remember that execution time is the best metric…

 CPU Time =

€

instructions
program

×
cycles

instruction
×
seconds
cycles

Time (un-enhanced, 5 MHz) = (6)(3)(2 x 10-7) = 3.6 x 10-6 s
Time (un-enhanced, 10 MHz) = (6)(3)(1 x 10-7) = 1.8 x 10-6 s

- (above is easy to compare; instruction count, CPI are constants)

Time (enhanced, 5 MHz) = (4)(3)(2 x 10-7) = 2.4 x 10-6 s
- (comparing this to the un-enhanced, 10 MHz version – its better to improve clock rate)

Time (enhanced, 10 MHz) = (4)(3)(1 x 10-7) = 1.2 x 10-6 s

- (faster clock rate, fewer instructions = best)

Part B:
In reality, an instruction that requires a memory reference will require more clock cycles than an
instruction that operates on data thatʼs just in registers. If the new ADD instruction requires 5 clock
cycles, what is the average CPI for the different instruction mixes shown above?

- Here, need to take into account % of instructions with different CCs

- For un-enhanced, easy: 100% x (3) = 3 CCs/instruction

- For enhanced, we can see that 1 instruction out of 4 requires 5 CCs

o Therefore (0.75)(3) + (0.25)(5) = 3.5 CCs/instruction

- Note, CPI not as good (3.5 vs. 3.0)

o So, whatʼs the advantage? Enhanced version uses fewer instructions…

Part C:
Repeat Part A given the assumptions of Part B.

Time (un-enhanced, 5 MHz) – still (3.6 x 10-6 s)
Time (un-enhanced, 10 MHz) – still (1.8 x 10-6 s)

Time (enhanced, 5 MHz) – (4 instructions) x (3.5 CC / instruction) x (2.0 x 10-7 s) = 2.8 x 10-6 s

- Compare to last time – (2.4 x 10-6 s)
- Therefore, with greater CPI, enhanced version is ~16% slower!

o Although still better…

Time (enhanced, 10 MHz) – (4 instructions) x (3.5 CC / instruction) x (1.0 x 10-7 s) = 1.4 x 10-6 s

Things add up fast!

- Before:
o Time (un-enenhanced, 10 MHz) = 1.8 x 10-6 s
o Time (enhanced, 10 MHz) = 1.2 x 10-6 s
o 50 % speedup

- After:
o Time (un-enenhanced, 10 MHz) = 1.8 x 10-6 s
o Time (enhanced, 10 MHz) = 1.4 x 10-6 s
o 28.5% speedup!

Question 2:
You are given two implementations of the same Instruction Set Architecture (ISA):

Machine Cycle Time CPI
A 10 ns 2.0
B 20 ns 1.2

Part A:
What does “two implementations of the same ISA” really mean anyway?

- Instruction count will be the same
- Hence, possible instructions to translate code to is the same on both machines

o Therefore only one way to do i++ for example

- Then, how can CPI be different?
o 1 example:

 memory-to-register (load); path from M R = 2 CCs or 1 CC
 HW / organization based – see Venn diagram

Part B:
Which machine is faster? By how much?

- ta = n x 2.0 x 10 ns = 20(n) ns
- tb = n x 1.2 x 20 ns = 24(n) ns

(24 / 20 = 1.2X faster)

Part B: The Impact of the Compiler

Question 1:
A compiler designer is trying to decide between two code sequences for a particular machine. The
machine supports three classes of instructions: A, B, and C.

(Note A might be ALU instructions – like Adds, B might be Jumps, and C might be Loads and Stores).

- Class A takes 1 clock cycle to execute
- Class B takes 2 clock cycles to execute
- Class C takes 3 clock cycles to execute

We now have two sequences of instructions made up of Class A, B, and C instructions respectively.

Letʼs assume that:

- Sequence 1 contains: 200 Aʼs, 100 Bʼs, and 200 Cʼs
- Sequence 2 contains: 400 Aʼs, 100 Bʼs, and 100 Cʼs

Questions:

- Which sequence is faster?
- By how much?
- What is the CPI of each?

Recall CPU Time =

€

instructions
program

×
cycles

instruction
×
seconds
cycles

- No information give about clock rate – therefore, we can assume its X
- Instructions / program (sequence 1) = 500
- Instructions / program (sequence 2) = 600

Whatʼs the CPI?

CPI (Seq 1) = (200/500)(1) + (100/500)(2) + (200/500)(3)
 = (0.4 x 1) + (0.2 x 2) + (0.4 x 3)
 = 2

CPI (Seq 2) = (400/600)(1) + (100/600)(2) + (100/600)(3)
 = ((2/3) x 1) + ((1/6) x 2) + ((1/6) x 3)
 = 1.5

Time (1) = 500 x 2 x X = 1000X
Time (2) = 600 x 1.5 x X = 900X

Therefore, 1000X/900X = 1.11 X faster

Part C: Bad Benchmarks

Question 1:
Two compilers are being tested for a 100 MHz machine with 3 classes of instructions A, B, and C –
again, requiring 1, 2, and 3 clock cycles respectively.

Compiler A B C Cycles
1 5 M 1 M 1 M 10 M
2 10 M 1 M 1 M 15 M

Which sequence will produce more millions of instructions per clock cycle (MIPS)?

Seq 1 – Millions instructions/s = (5M + 1M + 1M) / (10x106 cycles x 1x10-8 s/CC)
 = 7M / 0.1
 = 70 M instructions/s

Seq 2 – Millions instructions/s = (10M + 1M + 1M) / (15x106 cycles x 1x10-8 s/CC)
 = 8M / 0.1
 = 80 M instructions/s

Is sequence 2 seemingly better?

Which sequence is faster?

CPU (time Seq 1) = (7x106 inst) x ((5/7)(1) + (1/7)(2) + (1/7)(3)) = 0.1 s

CPU (time Seq 2) = (12x106 inst) x ((10/12)(1) + (1/12)(2) + (1/12)(3)) = 0.15 s!

More MIPS, more time – Sequence 1 has a “better use” of executed instructions…

Part D: Other Examples

Question 1:
Letʼs assume that we have a CPU that executes the following mix of instructions:

- 43% are ALU operations (i.e. adds, subtracts, etc.) that take 1 CC
- 21% are Load instructions (i.e. that bring data from memory to a register) that take 1 CC
- 12% are Store instructions (i.e. that write data in a register to memory) that take 2 CCs
- 24% are Jump instructions (i.e. that help to implement conditionals, etc.) that take 2 CCs

What happens if we implement 1 CC stores at the expense of a 15% slower clock?

Is this change a good idea?

CPU time (v1):
 = (# of instructions) x ((0.43*1) + (0.21*1) + (0.12*2) + (0.24*2)) x (clock)
 = I x (1.36) x clock

CPU time (v2):
 = (# of instructions) x ((0.43*1) + (0.21*1) + (0.12*1) + (0.24*2)) x (clock x 1.15)
 = I x (1.24) x (1.15 x clock)
 = I x 1.426 x clock

v2 is 1.426 / 1.36 = ~5% slower

Question 2:
Assume that you have the following mix of instructions with average CPIs:

 % of Mix Average CPI
ALU 47% 6.7
Load 19% 7.9
Branch 20% 5.0
Store 14% 7.1

The clock rate for this machine is 1 GHz.

You want to improve the performance of this machine, and are considering redesigning your multiplier
to reduce the average CPI of multiply instructions. (Digress – why do multiplies take longer than adds?)
If you make this change, the CPI of multiply instructions would drop to 6 (from 8). The percentage of
ALU instructions that are multiply instructions is 23%. How much will performance improve by?

Class “todo” – first, need to calculate a basis for comparison:

- Let the number of instructions = I
o (Weʼre only changing the HW, not the code so the number of instructions per program

will remain constant.)

Then, the CPI for this instruction mix is:

CPIavg = (0.47)(6.7) + (.19)(7.9) + (.2)(5) + (.14)(7.1)
 = 3.15 + 1.5 + 1 + 1
 = 6.65

CPU Time (base) = I x 6.65 x (1x10-9)
 = 6.65 x 10-9(I)

Next…

- To evaluate the impact of the new multiplier, we need to calculate a new average CPI for ALU
instructions

We know that the OLD ALU CPI is:

CPI (ALU-old) = (0.23)(multiply) + (0.77)(non-multiply)
6.7 = (0.23)(8) + (0.77)(non-multiply)
We can solve for (non-multiply) – which equals 6.31.

Now, we can calculate a new ALU CPI:

CPI (ALU-new) = (0.23)(multiply) + (0.77)(non-multiply)

 = (0.23)(6) + (0.77)(6.31)
 = 6.24

Finally… we can calculate a new CPI and CPU time:

CPInew = (0.47)(6.24) + (.19)(7.9) + (.2)(5) + (.14)(7.1)
 = 2.68 + 1.5 + 1 + 1
 = 6.41

CPU Time (new) = I x 6.41 x (1x10-9)
 = 6.41 x 10-9(I)

The speedup with the new multiplier is then: 6.65 / 6.41 – or 3.7%

Part E: Amdahlʼs Law Examples

Question 1:
Consider 4 potential applications of the Amdhalʼs Law Formula:

1. 95% of a task/program/etc. is improved by 10%
2. 5% of a task/program/etc. is improved by 10X
3. 5% of a task/program/etc. is infinitely improved
4. 95% of a task/program/etc. is infinitely improved

For all 4 cases, what is the overall speedup of the task?

Recall Amdahlʼs Law Formula:

€

Speedup =
1

(1− fenhanced)+
fenhanced

speedupenhanced

Case 1:

€

Speedup =
1

(1−0.95)+ 0.95
1.1

= 1.094

- Here, there is a 9.4% speedup.
- Because the enhancement does not affect the whole program, we donʼt get 10% – but because

itʼs widely applied, we get close.

Case 2:

€

Speedup =
1

(1−0.05)+ 0.05
10

= 1.047

- Here, there is a 4.7% speedup.
- Because the enhancement is limited in scope, there is limited improvement.

Case 3:

€

Speedup =
1

(1−0.05)+ 0.05
∞

= 1.052

- Here, there is a 5.2% speedup.
- Same as Case 3. Because the enhancement is limited in scope, there is limited improvement.

Case 4:

€

Speedup =
1

(1−0.95)+ 0.95
∞

= 20

- Only if enhancement almost everywhere do you see big speedup – and then only 20X!
- (If 1,000,000 – still see about 20X – therefore “lose” 50,000X of improvement)

Question 2:
Letʼs suppose that we have 2 design options to choose from:

1. We can make part of a task 20X faster than it was before; this part of the task constitutes 10%
of the overall task time.

2. We can make 85% of the task 1.2X faster.

Part A:
Which is better?

To answer, we need to calculate 2 parameters:

1. % of task that will run faster / how much faster it will run
2. Part of task that will be the same as before

 (i) (ii) (i) + (ii)
Case 1

€

0.1
20

= 0.005 (1-0.1) .005 + 0.9 = 0.905

Case 2

€

0.85
1.2

= 0.708 (1-0.85) 0.708 + 0.15 = 0.858

 Think of this column
as the new component
of execution time

This is the part of the
task that takes the
same as before.

Can then divide normalized old execution time by the result to get speedup:

For Case 1:

€

1
0.905

= 1.105 = 10.5%

For Case 2:

€

1
0.858

= 1.166 = 16.5%

Therefore Case 2 is better – hint – b/c it improves almost everything

Part B:
Question – how much / what % of code must be sped up by 20X to match performance of Case 2?

€

1.165 =
1

(1− fractionenhanced)+
fractionenhanced

20

If we solve for fractionenhanced, we get 0.149 – i.e. 14.9% of the code/task must run 20X faster instead of
10%.

Part C:
Question – What if only 10% of our task can be sped up? How much faster would we have to make it?

€

1.165 =
1

(1−0.10)+ 0.1
Speedup

If solve for speedup, we see:

1.165 x [(1-0.1) + (0.1/x)] = 1
1.165 x [(0.9) + (0.1/x)] = 1
1.0485 + (0.1165 / x) = 1
0.1165 / x = -0.0485

x = -2.4

(negative number means not possible!)

