CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 1

Lecture 04

Performance Metrics and Benchmarking

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking

University of Notre Dame

for i=0; i<5; i++ {
(a*b) + c;

}

MULT r1,r2,r3 ~ #1r1 € r2*r3
ADD r2,r1,r4 J,# € rl+rd

110011

000001

000011

001110

000001

000100

Recommended Readings

+ Readings
— H&P: Chapter 1

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 4

Which is “the best”?

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 6
Measuring & Improving Performance An “architecture” example

(if planes were computers...)
Which is best?

1 GHz clock rate, each

Plane | People Rq?ge Speﬁd Avgl-rCosf instruction takes ~1.2 cycles to
(miles)| (mph) | (millions) execute
737-800 | 162 | 3,060| 530 63.5
747-8T | 467 | 8000 | 633 | 257.5
777-300 | 368 | 5995 | 622 222 H_ow do we de_termlne
which machine is better?
787-8 | 230 | 8000 | 630 153 MOV R1, d(8)
Add R2, R3, R1

Sub R5, R2, Rl
MOV d(9) RS

A 2 GHz clock rate, each Add R4, R3, RO
W instruction takes ~1.8 cycles to e
787 execute

University of Notre Dame University of Notre Dame
CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 7 CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 8

May be a minimum performance requirement Power and energy are important too

%

Cellphone

— x108 Portable Player |
2 1 T P o
£ y
9 NTSC Staridard Definition B . ‘.. . o Sample # Cycles/ Processor
3 Monitoring
g 10 % Television Broadcast (SDTV) and DVD . g < Rate Sample Frequency
FE e @& - = Pulseoximetry 1kHz 331 331kHz
L ~ ﬁ High Definition Television @ Single-lead ECG | 200Hz 4990 1MHz
o Brogdcast (HOTV) 2nd Blu-hay DVD — o 12-lead ECG 1kHz 25700 25.7MHz
g 3 -
£ 20 4kx2k (4096x2048) "\: : —
& == 1080HD (1920x1080) -
A. 720HD (1280x720) e
W, 5255D (720x480) ame\ P
o, O CIF (352x288) pe‘k
S5, eV
0 30 ot
S5 So\u\‘
ON e
'S . . e . . o o o .
CO’@ FIg. 2. Scenarios for monitoring cardiac activity with varying
real-time processing demands. For each application, locations of
Fig. 1. Performance requirements for various applications based on frame rate and resolution [6]. Yellow dashed line shows electrodes/probes on the body are shown, as well as the required clock
limit of H.264/AVC standard. Next-generation standard is expected to reach above this line. frequency of the sensor processor. (Photos courtesy of GANFYD.)
Technologies for l Itradynamic By ANANTHA P. CHANDRAKASAN, Fellow IEEE, DENts C. DALY, Member IEEE, Technologies for l Itradynamic By ANANTHA P. CHANDRAKASAN, Fellow IEEE, DENts C. DALY, Member IEEE,
ANIEL FREDERIC FINCHELST , Member IEEE, JoYyCE KWONG, Student Member IEEE, ANIEL FREDERIC FINCHELST , Member IEEE, JoYCE KWONG, Student Member IEEE,
3 YoGEsH KUMAR RAMAL r IEEE, MARMUT ERSIN SINANGIL, Student Member IEEE, 3 YocEsH KUMAR Ram. r IEEE, MARMUT ERSIN SINANGIL, Student Member IEEE,
Voltage Scaling Voltage Scaling S

Vol. 9, No. 2, February 2010 | P

it [EEE Vol. 9, No. 2, February 2010 | P i [EEE

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 10
Architecture: kinda like dating... Characterizing Performance
+ How can one computer’s performance be understood
Intelligent or two computers be compared?

+ What factors go into achieving “good performance”?
— Raw CPU speed?
— Memory speed or bandwidth?
— /O speed or bandwidth?
— The operating system’s overhead?

. - iler?
Pick 2... The com.pller.
— Battery life?

>

+ Critical to succinctly summarize performance, and

Attractive Available ;
meaningfully compare.

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 11
Common (and good) performance metrics Throughput vs. Latency
- latency: response time, execution time + What is better?
— good metric for fixed amount of work (minimize time) — A machine that takes 1 ns to do “task X 1 time

— A machine that takes 15 ns to do “task X” 30 times...

+ throughput: bandwidth, work per time, “performance” .
+ ...but 5 ns to do “task X” 1 time

— = (1/latency) when there is NO OVERLAP 28888 88888

10 time units
-z (1_ / Iatlency) when thhere. ISI | 080888, — The 1st machine has a lower latency for a single
in rea pt.'ocesso.rs there is always .over ap o 00000 operation...

— good metric for fixed amount of time (maximize work) _ The 2nd machine has better throughput for multiple
- comparing performance operations

— A is N times faster than B if and only if:

- perf(A)/perf(B) = time(B)/time(A) = N — Which is better depends on what kind of computation
— A is X% faster than B if and only if: you need to do

- perf(A)/perf(B) = time(B)/time(A) = 1 + X/100

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking

Execution time and throughput are really good
performance metrics in that they’re “lowest common
denominators”

(i.e. if X finishes in 5 seconds and Y finishes in 10, its
hard to make the case that Y is faster!)

Later, we discuss a few other performance metrics that
you may sometimes see - but are generally not as good
and/or misleading.

University of Notre Dame
CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 15

IC, CPl and IPC

Consider the following:

1 T T 1T T T
1 2345 6 7 89 101112 13 14 15 time

Total Execution Time =15 cycles

Instruction Count (IC) = Number of Instructions =10
Average number of cycles per instruction (CPl) =15/10=1.5
Instructions per Cycle (IPC) =10/15 =0.66

Can CPl<1?

University of Notre Dame

13

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking
A CPU : The Bigger Picture

Seconds _ Seconds

Instructions N Clock cycles N = CPU time

Program Instruction Clock Cycle Pr ogram

+ We can see CPU performance dependent on:
- Clock rate, CPI, and instruction count
+ CPU time is directly proportional to all 3:
X %

X %
* But, everything usually affects everything:

g

Organization

V'S

Clock Cycle Instruction
- CPI
Time Count

University of Notre Dame

Hardware
Technology

Compiler
Technology

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 16

Different Types of Instructions

+ Multiplication takes more time than addition

+ Floating point operations take longer than integer
operations

+ Memory accesses take more time than register
accesses

+ NOTE: changing the cycle time often affects the
number of cycles an instruction will take

CPU Clock Cycles = 2 CPI, <IC, = AvgCPI = IC

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 17 CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 18

Question: Measurement Comparison The Power of Compiler
« Given that two machines have the same ISA, which
measurement is always the same for both machines A compiler designer is trying to decide between two code
running program P? sequences for a particular machine. The machine supports
— Clock Rate: three classes of instructions: A, B, and C, which take one,
— CPI: two, and three cycles (respectively):

— Execution Time: Sequence 1 contains: 2 A’s, 1 B,and 2 C’s
Number of Instructions: Sequence 2 contains: 4 A’s, 1B, and 1 C
— MIPS:

Which sequence is faster? By how much? What is the CPI
of each?

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 19 CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking
Metrics Not all benchmarks are good...
* Metrics Discussed: - Example: MIPS (millions of instructions per second)

— Execution Time (instructions, cycles, seconds)
Machine Throughput (programs/second)

— (instruction count / execution time in seconds) x 106
— instruction count is not a reliable indicator of work

— Cycles Per Instruction (CPI) + Prob #1: some optimizations add instructions
— Instructions Per Cycle (IPC) « Prob #2: work per instruction varies
« Other Common Measures — (FP mult >> register move)

— MIPS (millions of instructions per second) + Prob #3: ISAs not equal (3 Pentium instrs != 3 AMD instrs)
P — You’ll see more when we talk about addressing modes

— MFLOPS (megaflops) = millions of floating point » Auto-increment may be a good example...
operations per second

— may vary inversely with actual performance

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 21

Good Benchmarks: Real Programs

+ real programs
— (plus) only accurate way to characterize performance
— (minus) requires considerable work (porting)
+ Standard Performance Evaluation Corporation (SPEC)
— http://www.spec.org
collects, standardizes and distributes benchmark suites
consortium made up of industry leaders
SPEC CPU (CPU intensive benchmarks)
+ SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006
other benchmark suites
+ SPECjvm, SPECmail, SPECweb

+ Other benchmark suite examples: TPC-C, TPC-H for databases

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking PX]

SPEC 2000

- Different programs in the suite stress different parts of
the architecture
— For example:
+ One benchmark may be memory intensive...
+ ...another may be compute intensive...
+ ...another may be /O intensive...

— ldeally, show wins on all aspects, but most often not the
case - or the point

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 22

SPEC CPU 2000

+ 12 integer programs (C, C++)
+ gcc (compiler), perl (interpreter), vortex (database)
+ bzip2, gzip (replace compress), crafty (chess, replaces go)
- eon (rendering), gap (group theoretic enumerations)
« twolf, vpr (FPGA place and route)
- parser (grammar checker), mcf (network optimization)
+ 14 floating point programs (C, FORTRAN)
- swim (shallow water model), mgrid (multigrid field solver)
+ applu (partial diffeq’s), apsi (air pollution simulation)
+ wupwise (quantum chromodynamics), mesa (OpenGL library)

- art (neural network image recognition), equake (wave
propagation)

- fma3d (crash simulation), sixtrack (accelerator design)

+ lucas (primality testing), galgel (fluid dynamics), ammp
(chemistry)

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 24

SPEC 2000 (and architecture evaluation)

. 1S-- [
hs like t N1M ®m1k O1 DCoreLock]

rap
oﬂeﬂseeg 152 121 124 130 141 136 120
100
a |
o r M M il 1 —
o
2 10 4
L
K.
)
o
4 el o2 oz 1 od fr.o ff.o3 1.04] [fr.03| [} .02 1.03
NN
S S V¢ PO Y &
g S & ® @
O@ & O
&)

(and interestingly, now such a graph without accompanying
power analysis is viewed as incomplete)

University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 25 CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 26

Other suites Some additional examples

hedded h h

MiBench: A free, cially repr: ative k suite

Table 1: MiBench Benchmarks

Auto./Industrial Consumer ’ Office

Network | Security ‘ Telecomm.

35

SPEC2000

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 27 CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 28
J J
Amdahl’s Law Amdahl’s Law and Speedup
+ Qualifies performance gain - Speedup tells us how much faster the machine will run
with an enhancement
- Amdahl’s Law defined... * 2 things to consider:
- The performance improvement to be gained from using - 1st...
some faster mode of execution is limited by the amount * Fraction of the computation time in the original machine that
of time the enhancement is actually used. can use the enhancement

- i.e. if a program executes in 30 seconds and 15 seconds of
exec. uses enhancement, fraction = 2 (always < 1)

- Amdahl’s Law defines speedup: - ond
Speed Execution time for entire task without enhancement - Improvement gained by enhancement (i.e. how much faster
eeaup =
P P Execution time for entire task using enhancement does the program run overall)
when possible - i.e. if enhanced task takes 3.5 seconds and original task took

7, we say the speedup is 2 (always > 1)

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 29 CSE 30321 - Lecture 04 - Performance Metrics and Benchmarking 30

Deriving the previous formula Amdahl’s Law examples

Execution Time 1
Speedupoverall = o =

Execution Time,,, F i
- r‘ac“c’nenhanced
(1 = Fractiong,janced) +

C 'SpeeduPennanced

{ «——— normalized old execution time

(1 — Fraction,panced) + enhanced

1 - % enhanced
(i.e. part of the task
will take the same
amount of time as

before) (note: # should be < 1)
(otherwise, performance gets worse)
(represents new component of ex. time)

% of task that will run faster

how much faster it will run

University of Notre Dame University of Notre Dame

