
CSE 30321 – Lecture 05-06 – In Class Example Handout

Part A: Discussion – RISC vs. CISC

- With A2, more fetch and decodes (time overhead) but also simplified datpath
- With A1, could need more functional units, could affect clock cycle time, etc.
- Ask class to think about this.

Part B: Discussion – Programmer Visibility & Procedure Calls

- Board discussion of register that is programmer visible (i.e. R1) and that which is not (i.e. PC,
memory data register, etc.)

- Ask class:
o Are there multiple copies of function calls in assembly?
o How do they think this is handled?

Part C: Byte Addressing (1)
1 Kbit memory, 16 bit word addressable (i.e. can address data in words that are 16 bits…)

- (?) # of words: 1024 / 16 = 64 words
- (?) # of address bits: 26 = 64  6 bits of address

Part D: Byte Addressing (2)

- Letʼs assume we have words/instructions/etc. that are 32 bits
- Letʼs also assume that we have 32-bits of address…

31 24,23 16,15 8,7 0
| Byte 1 | Byte 2 | Byte 3 | Byte 4 |

If we address to the byte, how many addresses do we need?

Answer: 4. Therefore, if instructions are 32 bits, and instructions and data share the same
memory, and we want to go from one instruction to the next, need to do: PC  PC + 4

Part E: Discussion & More Examples

Discussion: Course Goals / C++, Java Example

Look at: “while((j>0) && numbers(j) > index)”
 j=j-1;
 …
What if our processor was designed to implement instructions you learned about for the 6-instruction
processor?

- Might do something like:
o MOV R1, #1 // Load constant 1 into R1
o SUB R2, R2, R1 // Assuming j = R2, use SUB

What if our processor was designed to implement instructions associated with MIPS?

- Could use a subtract immediate instruction (built into MIPS already)
o SUBi R2, R2, 1 // R2 = R2 – 1

- There are more bits to encode/do more “stuff”

Important take away: the concept here is the ISA – just like a for() or while() loop is a concept in
programming. Different ISAs are like different programming languages – i.e. the syntax for a for() loop
may be different in Matlab or C or Java – but youʼre still iterating through data or code in the same way.

Now, what about numbers(j -) ? (assume numbers is in memory)

- In MIPS, load instruction always assumes part of an address in a register

o lw $2, 0($1) // Says $2  Mem(0 + contents of $2)
- Note – offset does not have to be 0 either…

o lw $2, 20($1) // Says $2  Mem(20 + contents of $2)

- What about for 6-instruction processor?
o Problem – unless we assume an instruction like you added in Problem 1 of your last HW,

we canʼt index memory with a variable.
o What if we present problem as below (assume there are 5 elements in “numbers”):

 0: numbers(0) 10: MOV R1, #1 ***
 1: numbers(1) 11: MOV R2, #5
 2: numbers(2) 12: MOV R3, d(5)
 3: numbers(3) 13: SUB R2, R2, R1
 …. ….
 Can something go here to get numbers(4)?
 ….
 13+N: JMPZ R2, ***

o Yes!
 MOV R4, d(12) // Load instruction encoding into R4
 SUB R4, R4, R1 // Now, MOV R4, d(4) – change encoding itself
 MOV d(12), R4 // Store encoding back into memory

o This is equivalent to changing an instruction in a register in MIPS!

Question 1:
Example:

- Assume we want to perform the operation A[4] = h + A[12]
- Further assume that the constant h is stored in $17
- Also, the starting address of array A is stored in $18

Assuming that data words are 32 bits long (as is the case with MIPS), write a sequence of MIPS
machine instructions to perform this operation.

Ask class for solution.

1st, need to remember MIPS words are byte addressable + aligned:
 3 …. 0
 7 …. 4
 11 …. 8
 15 …. 12

Implies: if we want A(12), we do not do: lw $2, 12($18)
Instead: need, starting address of A + (12th element x 4)

So, one way to get A(12): lw $2, 48($18) // $2  M(48 + R(18))

Another way: addi $3, $18, 48 // $3  R(18) + $18
 lw $2, 0($3) // $2  M(0 + R(3))

 (note – 2 instructions instead of 1)

To finish: lw $2, 48($18)
 add $3, $2, $17
 sw ???, $3

??? = 16($18)

- Note, cannot have lw $2, $4($6)
o lw = i-type therefore offset must be encoded in the instruction

- (Works if known at compile time)
o If not, may need to use other method (a lot like pointers)

Question 2:
Given the swap procedure shown below, write a sequence of MIPS machine instructions to perform the
operation.
 void swap(int *y, int k)
 {
 int tmp;
 tmp = v[k];
 v[k] = v[k+1];
 v[k+1] = tmp;
 }

Assume that tmp = $8, starting address of v = $17, k = $18

Class question: What to first? Figure out address associated with V(k)

Here, may need to use register technique b/c k is a variable

- k = array index, but we need k to be a multiple of 4

- If k = 1, need 4; if k = 2, need 8 …
o Example: k = 8 = 0001000 = 23 = 8
o Shift by 2: k = 32 = 0100000 = 25 = 32

- Multiply k by 4 – easiest way is to shift binary number left

o MIPS has instruction to do this…
 sll $20, $18, 2

o Gives us correct decimal value of k

- Now, need to tack on starting address of array:
o Just use add instruction: add $20, $20, $17 // reuse $20

- Now, $20 = physical address associated with v(k)

Class: finish rest of code…
 lw $8, 0($20) // $8 = tmp (given in problem); get (v(k)
 lw $9, 4($20) // read v(k+1)

 sw $9, 0($20) // swap in memory
 sw $8, 4($20) //

Question 3:
Write the sequence of MIPS instructions to accomplish the following:

 if (i == j)
 h = i + j;
 else
 h = i – j;

Hint #1:

- You shouldnʼt need more than 4 instructions
Hint #2:

- Think about using a bne or beq instruction
- (bne $t0, $t1, Label # if $t0 != $t1, goto Label)

Assume: i = $7 j = $8 k = $9

Answer:

 bne $7, $8, else // if $7 != $8, want to do “else”
 add $9, $7, $8 // if $7 = $8, want to add $7 and $8 and store the result in $9
 jump end if // if $7 = $8, want do nothing else
else: sub $9, $7, $8 // if $7 != $8, h = i – j
end if:

Question 4:
How would we implement a branch-if-less-than instruction?

- blt $s1, $2, Label

Hint:

- Use the set-on-less-than instruction
- slt $t0, $s1, $s2 # reg $t0 = 0 if $s1 >= $s2

reg $t0 = 1 if $s1 < $s2

Answer: slt $1, $1, $2 // $1 reserved for assembler; might be reserved as “flag” bit
 bne $1, $0, label // $1 is set to 1 or 0 above, $0 = 0 by default
 // therefore, if s1 < s2, $1 = 1
 // then 1 !=0, so branch

How do we get constants into memory? How do we get large constants into memory?

- 50% of instructions use small constants – therefore there is an immediate form of many
instructions – e.g. addi, ori, etc.

- What about larger constants? E.g. $5  0x11111111
o Canʼt use normal immediate instruction (only 16 bits and above example needs 32)

- Use lui – (load upper immediate) – lui $5, 4369 (hex)
o | 6 bit opcode | rs = 00000 | rt = 00101 | 0001 0001 0001 0001 (436910) |
o Therefore, higher order bytes of $5 = 111116
o Then, could use addi, ori to finish

 E.g. addi $5, $5, 4369 OR ori $5, $0, 4369

J-Type Example:

If you look in your book at the syntax for j (an unconditional jump instruction), you see something like:

 j addr
e.g. would seemingly say, PC  addr

But, this actually isnʼt very realistic:

Format of jump is: | 6-bit opcode | 26-bit target address |

Only 26 bits would leave many addresses unreachable:
 232/22 – 226/22 = 1,056,964,608 specifically

In reality, jump allows you to go “farther” then you can with 16 bits of offset
 (226 / 22  you can move ~16M instructions from where youʼre currently at)

But, for sake of completeness, what does happen is this:
 New address: PC(31:28) | 26 bits of target address | 00 (to align to word)

Note: in HW, etc. j “else” perfectly OK unless noted.

Also, to compare to i-Type branch...

- beq $6, $7, else
o beq = 6 bits
o $6 = 5 bits
o $7 = 5 bits
o else = 16 bits

- PC  PC + 4 + (offset associated with else x 4)

Note, again, beq $6, $7, else is OK.

