
CSE 30321 – Lecture 07-08 – In Class Example Handout 
 
Part A:  J-Type Example: 
 
If you look in your book at the syntax for j (an unconditional jump instruction), you see something like: 
 
 j  addr 
e.g.  would seemingly say, PC  addr 
 
But, this actually isnʼt very realistic: 
 

Format of jump is:  | 6-bit opcode | 26-bit target address | 
 
Only 26 bits would leave many addresses unreachable: 
 232/22 – 226/22 = 1,056,964,608 specifically 

 
In reality, jump allows you to go “farther” then you can with 16 bits of offset 
 (226 / 22  you can move ~16M instructions from where youʼre currently at) 
 
But, for sake of completeness, what does happen is this: 
 New address:  PC(31:28)  |  26 bits of target address  |  00 (to align to word) 
 
Note:  in HW, etc. j “else” perfectly OK unless noted. 
 
 
 
 
Also, to compare to i-Type branch... 

- beq $6, $7, else 
o beq  = 6 bits 
o $6  = 5 bits 
o $7  = 5 bits 
o else  = 16 bits 

- PC  PC + 4 + (offset associated with else x 4) 
 

Note, again, beq $6, $7, else is OK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part B:  I-Type and Endianness: 
 
Part 1:  Endianness 
 

 
 

Byte Ordering

• The layout of multi-byte operands in memory must also be carefully considered.

• There are 2 ways that data might be “laid out”/arranged in a given memory location.

– Little Endian: Least significant byte is at the lowest address in memory. (This is the way that x86
does things...)

– Big Endian: Most significant byte is at the lowest address in memory. (This is the way that
“everything else” does things...)

– (We’ll assume Big Endian unless otherwise noted...)

• For example, here is a hex representation of a 32 bit dataword: AA|BB|CC|DD. The most significant
bit is A and the least significant bit is D.

– In Little Endian, the most significant part of the data word would be at the most significant
address and the least signficant part of the data word would be at the least signficant part of the
address.
∗ i..e DD00|CC01|BB10|AA11

∗ This is probably the most “intuition friendly”
– In Big Endian the situation is reversed – i.e. AA00|BB01|CC10|DD11. This is more “reader

friendly.”

(Class question?)
Here’s another example. Assume the 4-byte word 0x11223344 is stored at word address 100. How is the
data distributed in Big and Little Endian forms?

Big Endian:

• (Byte address in first row, word address = 100, MSB at word address)

Table 1: Big Endian

100 101 102 103
11 22 33 44
+0 +1 + 2 +3

Little Endian

• (LSB at word address)

Table 2: Little Endian

103 102 101 100
11 22 33 44
+3 +2 + 1 +0

Important if sending data from 1 machine to the another. (e.g. x86→ AMD, Power PC)

1



Part 2:  I-Type Constants 
What does the graph below – the size of common immediate (hard coded constant) values – 
tell you about the numbers of bits that have been made available for a hard coded constant in 
a MIPS immediate instruction? 
 
Frequency of constant requiring N bits: 

 
 

I-Type Encoding: 

 
 
Answer: 
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!!R-type: All operands are in registers!

Assembly: add   $9,  $7,  $8   # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]!

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! !(add: op+func)!

Machine:!

B:  000000  00111   01000  01001     xxxxx      100000 

D:       0          7           8          9             x             32         

R-Type:  Assembly and Machine Format!

op (6) rs (5) rt (5) rd (5) shamt (5) 

31           26 25         21 20      16 15         11 10               6  5                0 

funct (6) 
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!!All instructions have 3 operands!

!!All operands must be registers!

!!Operand order is fixed (destination first)!

!! Example: "

!C code:  !A = B - C; 

! !   (Assume that A, B, C are stored in registers s0, s1, s2.)!

!MIPS code: !  sub $s0, $s1, $s2 !

!Machine code: 000000 10001 10010 10000 xxxxx 100010!

!!Other R-type instructions!

"!addu, mult, and, or, sll, srl, …!

R-type Instructions!
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•!   I-type: One operand is an immediate value and others  
               are in registers 

  Example:   addi   $s2, $s1, 128     # addi rt, rs, Imm 
                                                          # RF[18] = RF[17]+128 

Op (6) rs (5) rt (5) Address/Immediate value (16) 

31            26 25           21 20          16 15                                                        0 

I-Type Instructions!

B:  001000  10001   10010         0000000010000000 

D:       8          17          18                       128 

University of Notre Dame!

CSE 30321 - Lectures 05-06 – Introduction to the MIPS ISA! 32!

•!   I-type: One operand is an immediate value and others  
               are in registers 

  Example:   lw   !"#$%#&'!()*%%%%%+%RF[19] = DM[RF[8]+32] 

Op (6) rs (5) rt (5) Address/Immediate value (16) 

31             26 25          21 20        16 15                                                           0 

I-Type Instructions: Another Example!

B: 100011   01000    10011         0000000000100000 

D:      35           8          19                        32 

How about load the next word in memory? 



Part C:  A Simple, MIPS-based Procedure: 
 
Swap Procedure Example: 
Letʼs write the MIPS code for the following statement (and function call): 
 

if (A[i] > A [ i+1])   // $s0 = A 
swap (&A[i], &A[i+1]) // $t0 = 4*i 

 
We will assume that: 

- The address of A is contained in $s0 ($16) 
- The index (4 x i) will be contained in $t0 ($8) 

 
Answer: 
 
The Caller: 
 … 
 // Calculate address of A(i) 
 add  $s1, $s0, $t0  // $s1  address of array element i in $s1 
 
 // Load data 
 lw  $t2, 0($s1)  // load A(i) into temporary register $t2 
 lw $t3, 4($s1)  // load A(i+1) into temporary register $t3 
 
 // Check condition 
 ble $t2, $t3, else  // is A(i) <= A(i+1)?  If so, donʼt swap 
 
 // if >, fall through to here… 
 addi $a0, $t0, 0  // load address of x into argument register (i.e. A(i)) 
 addi $a1, $t0, 4  // load address of y into argument register (i.e. A(i+1)) 
 
 // Call Swap function 
 jal swap   // PC  address of swap; $ra | $31 = PC + 4 
else: 
 
 
//  Note that swap is “generic” – i.e. b/c of the way data is passed in, we do not assume the values 
// to be swapped are in contiguous memory locations – so two distinct physical addresses are  
// passed in  
 
Swap: 
 lw $t0, 0($a0)  // $t0 = mem(x) – use temporary register 
 lw $t1 0($a1)  // $t1 = mem(y) – use temporary register 
 sw 0($a0), $t1  // do swap 
 sw 0($a1), $t0  // do swap 
 jr $ra   // $ra should have PC = PC + 4 
    // PC = PC + 4 should be the next address after jump to swap 
 

 
 
 
 



Part D: Procedures with Callee Saving (old exam question): 
Assume that you have written the following C code: 
 
//------------------------------------------------------------------- 
int variable1 = 10;    // global variable 
int variable2 = 20;    // global variable 
//------------------------------------------------------------------- 
int main(void) { 
 int i  = 1;    // assigned to register s0 
 int j  = 2;    // assigned to register s1 
 int k  = 3;    // assigned to register a3 
 int m; 
 int n; 
 
 m = addFourNumbers(i, j); 
 
 n = i + j;     // 1 + 2  = 3 
 
 printf(“m is %d\n”, m);   // printf modifies no registers 
 printf(“n is %d\n”, n);   // printf modifies no registers 
 printf(“k is %d\n”, k);   // printf modifies no registers 
} 
//--------------------------------------------------------------------- 
int addFourNumbers(int x, int y) { 
 int i;     // assigned to register s0 
 int j;     // assigned to register s1 
 int k;     // assigned to register s2 
  
 i  = x + y;    // 1 + 2  = 3 
 j  = variable1 + variable2; // 10 + 20  = 30 
 k   = i + j;    // 3 + 30  = 33 
 
 return k; 
} 
//--------------------------------------------------------------------- 
 
The output of the printf statements in main is: m is 33 
        n is 3 
        k is 3 
 
Assume this program was compiled into MIPS assembly language with the register conventions 
described on Slide 12 of Lecture 07/08.  Also, note that in the comments of the program, I have 
indicated that certain variables will be assigned to certain registers when this program is compiled and 
assembled.  Using a callee calling convention, answer the questions below: 
 
 
 
 
 
 
 
 
 
 
 
 



Q-i:   Ideally, how many arguments to the function addFourNumbers must be  
 saved on the stack? 
   
0.  By default, arguments should be copied into registers. 
 
 
 
Q-ii: What (if anything) should the assembly language for main() do right  
 before calling addFourNumbers? 
 
Copy values of s registers into argument registers; save value of k (in $a3) onto the stack 
 
 
 
Q-iii: What is the first thing that the assembly language for addFourNumbers  
 should do upon entry into the function call? 
 
Callee save the s registers 
 
 
 
Q-iv: What is the value of register number 2 (i.e. 00102) after main completes  
 (assuming there were no other function calls, no interrupts, no context  
 switches, etc.) 
 
33.  Register 2 = v0.  It should not have changed. 
(different answer if you assume printf returns value) 
 
  
 
Q-v: Does the return address register ($ra) need to be saved on the stack  
 for this program?  Justify your answer.  (Assume main() does not  return). 
 
No – if no other procedures are called. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part E: Procedures with Callee Saving (old exam question): 
Assume you have the following C code: 
 
int main(void) { 
 int x = 10;   # x maps to $s1 
 int y = 20;   # y maps to $s2 
 int z = 30;   # z maps to $s3 
 
 int a;    # a maps to $t0 

int b;    # b maps to $t1 
int c;    # c maps to $t2 

 
 c = x + y; 
 
 a = multiply(x, z); 
 
 b = c + x; 
} 
 
int multiply(int a, int b) {   
 int q;    # q maps to $t0 
 int z;    # z maps to $t1 
  
 q = add(); 
 z = a*b; 
  
 return z; 
} 
 
int add() { 
 int m = 5;   # m maps to $t4 
 int n = 4;   # n maps to $t5 
 int y;     
 y = a + b; 
 return y; 
} 
 
Assuming the MIPS calling convention, answer questions A-E.  Note – no assembly code/machine 
instructions are required in your answers; simple explanations are sufficient. 
 
 
 
 
 
 
 
 
 
 
 
 

■ 

▲ 



Q-i:  What, if anything must main() do before calling multiply? 
 

- Save $t2 to stack, needed upon return. 
- Also, copy $s1 to $a0 and copy $s3 to $a1 

 
 
 
 
Q-ii: Does multiply need to save anything to the stack?  If so, what? 
 

- $31  
- The s registers associated with main() 
- The argument registers passed into multiply before calling add() 

 
 
 
 
Q-iii:   Assume that multiply returns its value to main() per the MIPS register convention.  What  

machine instructions might we see at ▲ to completely facilitate the function return? 
 

- We have to copy the value in $t1 to $2. 
- We would call a jal instruction 
- We would adjust the stack pointer, restored saved registers. 

 
 
 
Q-iv:   What line of code should the return address register point to at ▲? 
 

- b = c + x 
 
Other answers were considered correct based on stated assumptions. 
 
 
 
Q-v:   What line of code should the return address register point to at ■? 
 

- b = c + x 
 
Other answers were considered correct based on stated assumptions. 
 
 
 
 
 
 
 
 
 
 
 
 



Part F: More Complex Example: 
Letʼs write the MIPS code for the following: 
 
for(i=1; i<5; i++) {  int function(int, int) { Assume: 
  A(i) = B*d(i);     A(i) = A(i-1);   Addr. of A = $18 
  if(d(i) >= e) {    e = A(i);   Addr. of d = $19 
    e = function(A,i);   return e;   B = $20 
  }                        }             e = $21 
} 
 
     (We pass in starting “address of A” and “i”) 
 
Question/Comment My Solution Comment 
1st, want to initialize 
loop variables.  What 
registers should we 
use, how should we 
do it? 
 

addi $16, $0, 1 
addi $17, $0, 5 

# Initialize i to 1      
# Initialize $17 to 5 
 
(in both cases, saved registers are used – we 
want this data available post function call) 

2nd, calculate address 
of d(i) and load.  What 
kind of registers 
should we use? 
 
 
 

Loop:  sll $8, $16, 2 
           add $8, $19, $8 
           lw $9, 0($8)  

# store i*4 in $8 (temp register OK) 
# add start of d to i*4 to get address of d(i) 
# load d(i)  needs to be in register to do math 

Calculate B*d(i) 
 
 

mult $10, $9, $20 # store result in temp to write back to memory 

Calculate address of 
A(i) 
 
 
 
 
 

sll $11, $18, 2 
add $11, $11, $18 
 
CANNOT do: 
add $11, $8, $18 

# Same as above 
 
 
# We overwrote 
# But, would have been better to save i*4 
   Why?  Lower CPI 

Store result into A(i) 
 
 

sw 0($11), $10 # Store result into a(i) 

Now, need to check 
whether or not d(i) >= 
e.  How?  Assume no 
ble. 
 
 
 
 
 

slt $1, $9, $22 
 
 
 
bne $0, $1, start again 

# Check if $9 < $22 (i.e. d(i) < e) 
# Still OK to use $9  not overwritten 
# (temp does not mean goes away immediately) 
 
# if d(i) < e, $1 = 1 
# if d(i) >= e, $1 = 0 (and we want to call function) 
# (if $1 != 0, do not want to call function) 
 
 
 

 
 
 



Given the above 
setup, what comes 
next?  (Falls through to 
the next function call).  
Assume argument 
registers, what setup 
code is needed? 
 
 
 

    add $4, $18, $0 
    add $5, $16, $0 
x: jal function 

# load address of (A) into an argument register 
# load i into an argument register 
# call function; $31  x + 4 (if x = PC of jal) 

Finish rest of code:  
What to do?  Copy 
return value to $21.  
Update counter, check 
counter.  Where is 
“start again” at? 
 
 
 

      add $21, $0, $2 
sa: addi $16, $16, 1  
      bne $16, $17, loop 

# returned value reassigned to $21 
# update i by 1 (array index) 
# if i < 5, loop 
 
 
A better way:   
Could make array index multiple of 4 

Function Code 
Assume you will 
reference A(i-1) with lw 
… 0($x).  What 4 
instruction sequence 
is required? 
 

func: subi $5, $5, 1  
         sll $8, $5, $2 
         add $9, $4, $8 
         lw $10, 0($9) 

# subtract 1 from i 
# multiply i by 4  note 
# add start of address to (i-1) 
# load A(i-1) 

Finish up function. 
 
 

sw 4($9), $10 
add $2, $10, $0 

# store A(i-1) in A(i) 
# put A(i-1) into return register ($2) 

Return 
 

jr $31 # PC = contents of $31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



Part G: Nested Function Calls 
 
int main(void) {   foo1() {    foo2() { 
  i = 5;  # i = $16    a = 17;  # a = $16    x = 25; # x = $16 
  j = 6;  # j = $17    b = 24;  # b = $17    y = 12; # y = $17 
  k = foo1();     …     } 
  j = j + 1;     foo2(); 
}     } 
 
Letʼs consider how we might use the stack to support these nested calls. 
 
Question: 
How do we make sure that data for i, j ($16, $17) is preserved here? 
 
Answer: 
Use a stack. 
 
By convention, the stack grows up: 

 
 
Letʼs look at main(): 

- Assume we want to save $17 and $16 
o (weʼll use the stack pointer) 

- Also, anything else we want to save? 
o $31 – if nested calls. 

- How? 
o subi $sp, $sp, 12 # make space for 3 data words 

 
o Example:  assume $sp = 100, therefore $sp = 100 – 12 = 88 

 
- Then, store results: 

 
o sw 8($sp), $16 # address:  8 + $sp = 8 + 88 = 96 
o sw 4($sp), $17 # address:  4 + $sp = 4 + 88 = 92 
o sw 0($sp), $31 # address:  0 + $sp = 0 + 88 = 88 

 
 
Now, in Foo1() … assume A and B are needed past Foo2() … how do we save them? 

- We can do the same as before 
o Update $sp by 12 and save 

 
Similarly, can do the same for Foo2() 
 

Low Memory Address (0)!

High Memory Address (N)!

$sp!

$spold!
100

!

96
!

92
!

88
!

$spnew!

(2) On function call, $sp decremented!

(1) $sp!(3) Also a register 
called “Frame Pointer”!

Low Memory Address (0)!

High Memory Address (N)!

$sp!

$spold!
100

!

96
!

92
!

88
!

$spnew!

(2) On function call, $sp decremented!

(1) $sp!(3) Also a register 
called “Frame Pointer”!



Now, assume that we are returning from Foo1() to main().  What do we do? 
 

- The stack pointer should equal the value before the Foo1() call (i.e. 88) 
 

lw $31, 0($sp) # $31  memory(0 + 88) (LIFO) 
lw $17, 4($sp) # $17  memory(4 + 88) 
lw $16, 8($sp) # $16  memory(8 + 88) 
 
Finally, update $sp: addi $sp, $sp, 12 ($sp now = 100 again) 

 
 
Letʼs talk about the Frame Pointer too: 

 
 
$fp (frame pointer) points to the “beginning of the stack” (ish) – or the first word in frame of a procedure 
 
Why use a $fp? 

- Stack used to store variables local to procedure that may not fit into registers 
- $sp can change during procedure (e.g. as just seen) 

o Results in different offsets that may make procedure harder to understand 
- $fp is stable base register for local memory references 

 
For example: 

 
 
Because $sp can change dynamically, often easier/intuitive to reference extra arguments via stable $fp 
– although can use $sp with a little extra math 

Low Memory Address (0)!

High Memory Address (N)!

$sp!

$spold!
100

!

96
!

92
!

88
!

$spnew!

(2) On function call, $sp decremented!

(1) $sp!(3) Also a register 
called “Frame Pointer”!

$fp (might be here)
!

$31
!

$17
!

$16
!

$sp (in foo1() = 88)
!

$fp generally > $sp
!

Saved $ra, $fp
!

Saved saved regs
!

More Generally:
! Low Memory Address (0)!

High Memory Address (N)!

Saved args
!

$fp
!

$sp
!

-"Therefore procedure might reference extra function argument as 0($fp)!
-"What if 2 saved arguments?  What next?!

-"With this convention:  lw $t0, 4($fp)!

Because $sp can change dynamically, often easier/intuitive to 
reference extra arguments via stable $fp – although can use $sp 

with a little extra math!



Part H: Recursive Function Calls 
 

int fact(int n) { 
 if (n<1) 
  return(1); 
 else 
  return(n*fact(n-1)); 
} 

 
Letʼs consider how we might use the stack to support these nested calls.  Weʼll also make use of the 
frame pointer ($fp). 
 
1: Fact: subi $sp, $sp, 12  # make room for 3 pieces of data on the stack –  
      # $fp, $sp, 1 local argument 
      # Therefore, if $sp = 100, its now 88 
  sw 8($sp), $ra   # M(88 + 8)  $ra  (store return address) 
  sw 4($sp), $fp   # M(88 + 4)  $fp  (store frame pointer) 
  subi $fp, $fp, 12  # update the frame pointer 
      # - could assume its 1 above old $sp 
      # - book uses convention here (i.e. $sp = $fp) 
      # - therefore return to data at 0($fp) 
      # - in the other case, it would be 4($fp) 
 
2:  bgtz $a0, L2   # if N > 0 (i.e. not < 1) weʼre not done 
      # we assume N is in $a0 
 
4:  addi $v0, $0, 1  # we eventually finish and want to return 1 
      # put 1 in return register 
  j L1    # jump to return code 
 
3: L2: sw $a0, 0($fp)  *** # save argument N to stack (weʼll need it when we return) 
  subi $a0, $a0, 1  # decrement N (N = N – 1), put result in $a0 
  jal Fact    # call Factorial() again 
 
6: @ lw $t0, 0($f0)   # load N (saved at *** to stack) 
  mult $v0, $v0, $t0  # store result in $v0 
 
5: L1 lw $ra, 8($sp)   # restore return address 
  lw $fp, 4($sp)   # restore frame pointer 
  addi $sp, $sp, 12  # pop stack 
  jr $ra    # re 
 
 
 
 
 
 
 
 
 
 
 



More specific, quantitative example: 
 

84   
88   $spnew 
92 $fp  
96 $ra  

100 N  $spold 
104   
108   
112 N+1  $fpold 
116   

 
Assume $sp initially is equal to 100.  Therefore: 
 
 subi $sp, $sp, 12  # $sp = 88 
 sw $ra, 8($sp)  # M(88 +8)  $ra 
 sw $fp, 4($sp)  # M(88 +4)  $fp 
 subi $fp, $fp, 12  # $fp = 112 – 12 = 100 
 bgtz 
 sw $a0, 0($fp)  # M(100)  N (i.e. $ao) 
 
On return: 

- Assume N < 1 
 
5: lw $ra, 8($sp)  #  $ra  M(8 + 88) 
 lw  $fp, 4($sp)  #  $fp  M(4 + 88) 
      $fp now 112… 
 subi $sp, $sp, 12  #  $sp = 100 again 
 
6: lw  $t0, 0($fp)  #  $t0  M($fp) OR $ t0  M(112) 
      (which, per convention, would be N+1 from previous 
      call; use to start multiply accumulation) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


