Part H: Recursive Function Calls

Part A:
Let's consider how we might use the stack to support these nested calls. We'll also make use of the frame pointer (\$fp).

Code Section \#	Address	Label	MIPS Instruction	Comments
1	0	Fact:	subi \$sp, \$sp, 12	Make room for 3 pieces of data on the stack; \$fp, \$sp, and 1 local argument
	4		sw 8(\$sp), \$ra	If $\$$ sp $=88, \mathrm{M}(88+8) \leftarrow$ value of \$ ra
	8		sw 4(\$sp), \$fp	If $\$ \mathrm{sp}=88, \mathrm{M}(88+4) \leftarrow$ value of $\$$ fp
	12		subi \$fp, \$fp, 12	Update the frame pointer
2	16		bgtz \$a0, L2	If $\mathrm{N}>0$ (i.e. not <1) we're not done \rightarrow we assume N is in $\$ \mathrm{aO}$
4	20		addi \$v0, \$0, 1	We eventually finish and want to return 1 , therefore put 1 in return register
	24		j L1	Jump to return code
3	28	L2:	sw \$a0, 0(\$fp)	Save argument N to stack (we'll need it when we return)
	32		subi \$a0, \$a0, 1	Decrement $\mathrm{N}(\mathrm{N}=\mathrm{N}-1)$, put result in \$a0
	36		jal Fact	Call Factorial() again
6	40		Iw \$t0, 0(\$f0)	Load N (saved at *** to stack)
	44		mult \$v0, \$v0, \$t0	Store result in \$v0
5	48	L1:	Iw \$ra, 8(\$sp)	Restore return address
	52		Iw \$fp, 4(\$sp)	Restore frame pointer
	56		addi \$sp, \$sp, 12	Pop stack
	60		jr \$ra	Return from factorial

$\begin{array}{l}9 \text { \$ra is in } \\ \text { factorial }\end{array}$	$\begin{array}{l}\text { 10a More } \\ \text { of the same }\end{array}$

Code Trace
$1^{\text {st }}$ Call to Factorial

Addr What Happens

0	$\$ s p=\$$ sp-12; \$sp $\leftarrow 100$
4	$\mathrm{M}(100+8)=\mathrm{M}(108) \leftarrow \$$ ra
8	$\mathrm{M}(100+4)=\mathrm{M}(104) \leftarrow \$ \mathrm{pp}$
12	$\$ f p=\$ \mathrm{p}-12 ; \quad \$ \mathrm{pp} \leftarrow 112$
16	2 is greater than 0
28	$\mathrm{M}(\$ f p / 112) \leftarrow \mathrm{N}($ store $\#)$
32	$\mathrm{~N}=\mathrm{N}-1($ new $\arg =1)$
36	jal Fact $\left(\$ r a=40_{10}\right)$

6, 7 Calculate number to pass to function, call factorial again

Memory Contents: (Assume main() calls function which calls factorial.)

