
Part H: Recursive Function Calls

Part A:
Let!s consider how we might use the stack to support these nested calls. We!ll also make use of the
frame pointer ($fp).

Code
Section

Address Label MIPS Instruction Comments

1 0 Fact: subi $sp, $sp, 12 Make room for 3 pieces of data on the stack;
$fp, $sp, and 1 local argument

 4 sw 8($sp), $ra If $sp = 88, M(88 + 8) ! value of $ra

 8 sw 4($sp), $fp If $sp = 88, M(88 + 4) ! value of $fp

 12 subi $fp, $fp, 12 Update the frame pointer

2 16 bgtz $a0, L2 If N > 0 (i.e. not < 1) we!re not done
" we assume N is in $a0

4 20 addi $v0, $0, 1 We eventually finish and want to return 1,
therefore put 1 in return register

 24 j L1 Jump to return code

3 28 L2: sw $a0, 0($fp) Save argument N to stack
(we!ll need it when we return)

 32 subi $a0, $a0, 1 Decrement N (N = N – 1), put result in $a0

 36 jal Fact Call Factorial() again

6 40 lw $t0, 0($f0) Load N (saved at *** to stack)

 44 mult $v0, $v0, $t0 Store result in $v0

5 48 L1: lw $ra, 8($sp) Restore return address

 52 lw $fp, 4($sp) Restore frame pointer

 56 addi $sp, $sp, 12 Pop stack

 60 jr $ra Return from factorial

1 (immediately inside function)!

2 (n<1 check)!

3 (recursive function call)!

4 (put "1# in return register)!

5 (return)!

6 (multiply function values)!

Part B: PLACE COMPLETED FACTORIAL UP ON THE SCREEN.
Let!s walk through this code (and memory) assuming that we call the factorial function with the number
2. For your reference, I!ve included tables below that you can use to keep track of both instruction
execution and the contents of memory. We!ll assume that $sp is initially 112 and that $fp is 124.

Code Trace:
1st Call to Factorial 2nd Call to Factorial 3rd Call to Factorial
Addr What Happens Addr What Happens Addr What Happens

0 $sp = $sp-12; $sp ! 100 0 $sp = $sp-12; $sp ! 88 0 $sp = $sp-12; $sp ! 76

4 M(100+8) = M(108) ! $ra 4 M(96) ! $ra ($ra=40) 4 M(84) ! $ra ($ra=40)

8 M(100+4) = M(104) ! $fp 8 M(92) ! $fp ($fp =112) 8 M(80) ! $fp ($fp =100)

12 $fp = $fp-12; $fp ! 112 12 $fp = $fp-12; $fp ! 100 12 $fp = $fp-12; $fp ! 88

16 2 is greater than 0 16 1 is greater than 0 16 0 is NOT greater than 0

28 M($fp / 112) ! N (store #) 28 M($fp / 100) ! N (store #) (start to return)

32 N = N-1 (new arg = 1) 32 N = N-1 (new arg = 0)

36 jal Fact ($ra = 4010)

36 jal Fact ($ra = 4010)

Return from 3rd Call Return from 2nd Call Return form 1st Call
Addr What Happens Addr What Happens Addr What Happens

20 addi $v0, $0, 1
(return 1)

40 lw $t0, 0($fp);
$t0 ! M(100); $t0 ! 1

40 lw $t0, 0($fp);
$t0 ! M(112); $t0 ! 2

24 j L1 44 $v0 ! 1x1
$v0 = return address reg.

44 $v0 ! 1x2
$v0 ! $v0 x $t0

48 $ra ! M($sp+8) ! M(84)
$ra ! 40

48 $ra ! M($sp+8) ! M(96)
$ra ! 40

48 $ra ! M($sp+8) ! M(108)
$ra ! factorial caller RA

52 $fp ! M($sp+4) ! M(80)
$fp ! 100

52 $fp ! M($sp+4) ! M(92)
$fp ! 112

52 $fp ! M($sp+4) ! M(104)
$fp ! factorial caller FP

56 $sp = 76+12; $sp ! 88
(pop stack)

56 $sp ! 88 + 12 = 100 56 $sp ! 100 + 12 = 112

60 jr $ra implies that PC ! 40

60 jr $ra makes: PC ! 40

60 jr $ra (PC + 4 of fact caller)

Memory Contents: (Assume main() calls function which calls factorial.)
Memory
Address

Before 1st
Fact Call

During 1st
Fact Call

During 2nd
Fact Call

During 3rd
Fact Call

Return
from 3rd

Return
from 2nd

Return
from 1st

76 Current $sp

80 Saved $fp
from prior call
(100)

84 Saved $ra of
fact (40)

88 Current $sp Current $fp
N never stored

$sp 3
rd

 fact
call out

92 Saved $fp
from prior call
(112)

96 Saved $ra of
fact (40)

100 Current $sp Current $fp
N = 1

 $sp 2
nd

 fact
call out

104 Saved $fp of
function calling
fact (124)

108 Saved $ra of
function calling
fact

112 Current $sp Current $fp
N = 2

 $sp 1
st

 fact
call out

116 Saved $fp of
main

120 Saved $ra of
main

Part B: PLACE COMPLETED FACTORIAL UP ON THE SCREEN.
Let!s walk through this code (and memory) assuming that we call the factorial function with the number
2. For your reference, I!ve included tables below that you can use to keep track of both instruction
execution and the contents of memory. We!ll assume that $sp is initially 112 and that $fp is 124.

Code Trace:
1st Call to Factorial 2nd Call to Factorial 3rd Call to Factorial
Addr What Happens Addr What Happens Addr What Happens

0 $sp = $sp-12; $sp ! 100 0 $sp = $sp-12; $sp ! 88 0 $sp = $sp-12; $sp ! 76

4 M(100+8) = M(108) ! $ra 4 M(96) ! $ra ($ra=40) 4 M(84) ! $ra ($ra=40)

8 M(100+4) = M(104) ! $fp 8 M(92) ! $fp ($fp =112) 8 M(80) ! $fp ($fp =100)

12 $fp = $fp-12; $fp ! 112 12 $fp = $fp-12; $fp ! 100 12 $fp = $fp-12; $fp ! 88

16 2 is greater than 0 16 1 is greater than 0 16 0 is NOT greater than 0

28 M($fp / 112) ! N (store #) 28 M($fp / 100) ! N (store #) (start to return)

32 N = N-1 (new arg = 1) 32 N = N-1 (new arg = 0)

36 jal Fact ($ra = 4010)

36 jal Fact ($ra = 4010)

Return from 3rd Call Return from 2nd Call Return form 1st Call
Addr What Happens Addr What Happens Addr What Happens

24 j L1 40 lw $t0, 0($fp);
$t0 ! M(100); $t0 ! 1

40 lw $t0, 0($fp);
$t0 ! M(112); $t0 ! 2

48 $ra ! M($sp+8) ! M(84)
$ra ! 40

44 $v0 ! 1x1
$v0 = return address reg.

44 $v0 ! 1x2
$v0 ! $v0 x $t0

52 $fp ! M($sp+4) ! M(80)
$fp ! 100

48 $ra ! M($sp+8) ! M(96)
$ra ! 40

48 $ra ! M($sp+8) ! M(108)
$ra ! factorial caller RA

56 $sp = 76+12; $sp ! 88
(pop stack)

52 $fp ! M($sp+4) ! M(92)
$fp ! 112

52 $fp ! M($sp+4) ! M(104)
$fp ! factorial caller FP

60 jr $ra implies that PC ! 40 56 $sp ! 88 + 12 = 100 56 $sp ! 100 + 12 = 112

60 jr $ra makes: PC ! 40

60 jr $ra (PC + 4 of fact caller)

Memory Contents: (Assume main() calls function which calls factorial.)
Memory
Address

Before 1st
Fact Call

During 1st
Fact Call

During 2nd
Fact Call

During 3rd
Fact Call

Return
from 3rd

Return
from 2nd

Return
from 1st

76 Current $sp

80 Saved $fp
from prior call
(100)

84 Saved $ra of
fact (40)

88 Current $sp Current $fp
N never stored

$sp 3
rd

 fact
call out

92 Saved $fp
from prior call
(112)

96 Saved $ra of
fact (40)

100 Current $sp Current $fp
N = 1

 $sp 2
nd

 fact
call out

104 Saved $fp of
function calling
fact (124)

108 Saved $ra of
function calling
fact

112 Current $sp Current $fp
N = 2

 $sp 1
st

 fact
call out

116 Saved $fp of
main

120 Saved $ra of
main

124 Current $fp

1 make room
for $sp, $fp, N!

2 save $ra, $fp
(prep for new call)!

3 update $fp to
define start of call
frame!

Callee saving!

4 N > 1?!

0 Main() calls function which calls factorial!

5 If so, store old value of N (data
that needs to be saved), ref $fp!

6, 7 Calculate number to pass to
function, call factorial again!

Part B: PLACE COMPLETED FACTORIAL UP ON THE SCREEN.
Let!s walk through this code (and memory) assuming that we call the factorial function with the number
2. For your reference, I!ve included tables below that you can use to keep track of both instruction
execution and the contents of memory. We!ll assume that $sp is initially 112 and that $fp is 124.

Code Trace:
1st Call to Factorial 2nd Call to Factorial 3rd Call to Factorial
Addr What Happens Addr What Happens Addr What Happens

0 $sp = $sp-12; $sp ! 100 0 $sp = $sp-12; $sp ! 88 0 $sp = $sp-12; $sp ! 76

4 M(100+8) = M(108) ! $ra 4 M(96) ! $ra ($ra=40) 4 M(84) ! $ra ($ra=40)

8 M(100+4) = M(104) ! $fp 8 M(92) ! $fp ($fp =112) 8 M(80) ! $fp ($fp =100)

12 $fp = $fp-12; $fp ! 112 12 $fp = $fp-12; $fp ! 100 12 $fp = $fp-12; $fp ! 88

16 2 is greater than 0 16 1 is greater than 0 16 0 is NOT greater than 0

28 M($fp / 112) ! N (store #) 28 M($fp / 100) ! N (store #) (start to return)

32 N = N-1 (new arg = 1) 32 N = N-1 (new arg = 0)

36 jal Fact ($ra = 4010)

36 jal Fact ($ra = 4010)

Return from 3rd Call Return from 2nd Call Return form 1st Call
Addr What Happens Addr What Happens Addr What Happens

20 addi $v0, $0, 1
(return 1)

40 lw $t0, 0($fp);
$t0 ! M(100); $t0 ! 1

40 lw $t0, 0($fp);
$t0 ! M(112); $t0 ! 2

24 j L1 44 $v0 ! 1x1
$v0 = return address reg.

44 $v0 ! 1x2
$v0 ! $v0 x $t0

48 $ra ! M($sp+8) ! M(84)
$ra ! 40

48 $ra ! M($sp+8) ! M(96)
$ra ! 40

48 $ra ! M($sp+8) ! M(108)
$ra ! factorial caller RA

52 $fp ! M($sp+4) ! M(80)
$fp ! 100

52 $fp ! M($sp+4) ! M(92)
$fp ! 112

52 $fp ! M($sp+4) ! M(104)
$fp ! factorial caller FP

56 $sp = 76+12; $sp ! 88
(pop stack)

56 $sp ! 88 + 12 = 100 56 $sp ! 100 + 12 = 112

60 jr $ra implies that PC ! 40

60 jr $ra makes: PC ! 40

60 jr $ra (PC + 4 of fact caller)

Memory Contents: (Assume main() calls function which calls factorial.)
Memory
Address

Before 1st
Fact Call

During 1st
Fact Call

During 2nd
Fact Call

During 3rd
Fact Call

Return
from 3rd

Return
from 2nd

Return
from 1st

76 Current $sp

80 Saved $fp
from prior call
(100)

84 Saved $ra of
fact (40)

88 Current $sp Current $fp
N never stored

$sp 3
rd

 fact
call out

92 Saved $fp
from prior call
(112)

96 Saved $ra of
fact (40)

100 Current $sp Current $fp
N = 1

 $sp 2
nd

 fact
call out

104 Saved $fp of
function calling
fact (124)

108 Saved $ra of
function calling
fact

112 Current $sp Current $fp
N = 2

 $sp 1
st

 fact
call out

116 Saved $fp of
main

120 Saved $ra of
main

8a More of
the same!

9 $ra is in
factorial!

8a More of
the same,
$ra = 40!

10a More
of the same!

10c Now meet exit criteria!

10b More of
the same,!
$ra = 40!

10d Undo stack pushes,
“restore” $ra, $fp!

10e Pop Stack!

11 Go back
to jal + 4!

12 Restore saved variable, calculate value to return: $v0
from old call, stored N; calculated value becomes $v0!

13a Return as before!

13b Pop Stack!

14a Calculate next value to return!

14b Pop Stack; restore
address of function that
called factorial!

