Suggested Readings

+ Readings
— H&P: Chapter 4.1-4.4

Lecture 10
The MIPS Datapath

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath

CSE 30321 — Lecture 10 — The MIPS Datapath

The organization of a computer

Von Neumann Model:
+ Stored-program machine instructions are represented as numbers
» Programs can be stored in memory to be read/written just like

Processor components

numbers.
Goal: .
Describe the fundamental components required in [Compller] Focus of lectures 5-9
a single core of a modern microprocessor as well Today
as how they interact with each other, with main we’ll talk
memory, and with external storage media.

about these

: -
" ‘ for i=0; i<5; i++ { things Control
a = (a*b) + c;

} ~
MULT r1,r2,r3 #r1 € r2*r3 Y
ADD r2,r1,r4 |, #12 & ri+rd Datapath

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100

Processor

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Review: Functions of Each Component The MIPS Subset

+ Datapath: performs data manipulation operations + To simplify things a bit we’ll just look at a few instructions:
— arithmetic logic unit (ALU) — memory-reference: lw, sw
— floating point unit (FPU) — arithmetic-logical: add, sub, and, or, slt

- Control: directs operation of other components ~ branching: beq, | Most common

— finite state machines instructions
+ Organizational overview:

— micro-programming
— fetch an instruction based on the content of PC

+ Memory: stores instructions and data
— random access v.s. sequential access
— volatile v.s. non-volatile

— decode the instruction

— fetch operands With Von Neumann,

RISC model do similar

+ (read one or two registers) things for each
— RAMs (SRAM, DRAM), ROMs (PROM, EEPROM), disk — execute / instruction
— tradeoff between speed and cost/bit - (effective address calculation/arithmetic-logical operations/

comparison)
— store result
+ (write to memory / write to register / update PC)

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath 7 CSE 30321 — Lecture 10 — The MIPS Datapath

Board discussion: Implementation Overview
+ Let’s derive the MIPS datapath...

* Input/Output and I/O devices: interface to environment
— mouse, keyboard, display, device drivers

+ Abstract/ Simplified View: simplest view of
/ Von Neumann, RISC uP

L Data
PC Address
A Ra
Instruction [— ALU

Rb Address
‘ Instruction i
Rw Register R
Clk Memory v File Data

A /\ Memory

[9)

| W Data

clk 7Tk A

i

+ 2types of sighals: Data and control Clk
+ Clocking strategy: Derived datapath is single cycle;
did not talk about internal storage

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath

CSE 30321 — Lecture 10 — The MIPS Datapath

Single Cycle Implementation

+ Each instruction takes one cycle to complete. Init
<) IR=I[PC]
Fetch

But before, datapath was “multi-cycle”....

Will quickly move to

+ We wait for everything to settle down, and the right PC=0 PC=PC+1
thing to be done A multi-cycle MIPS
e Y datapath, but will

derive a single-cycle

Decode

— ALU might not produce “right answer” right away
+ Cycle time determined by length of the longest path

version 1st...

op=0000 op= 0001 op= w\
instr. fetch & /
Load) Store) Add)

RFra]=D[d] D[d]=RF{ra] RFra] =
_ RFrb]+RF[rc]

University of Notre Dame

University of Notre Dame

Instruction Fetch Unit

Fetch the instruction: mem[PC] ,
Update the program counter:

Review:
Derivation of Single Cycle Datapath k- pe
Next Addr
Logic
Address
. Instruction Word
Instruction 32
Memory
CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath
H
During Decode... Let’s say we want to fetch...
...an R-type instruction (arithmetic)
+ Take bits from instruction encoding in IR and send to + Instruction format:
different parts of datapath M 2625 2120 1615 1110 65 0
e.g. R-type, Add encoding: op(6) | rs(5) | rt(5) | rd(5) | shamt(5)| funct (6)
31 26 25 2120 1615 1110 65 0
op(6) | rs(5) | rt(5) | rd(5) | shamt(5)| funct (6) . RTL: So IR € Memory(PC)
L | JL Y Il Y) |) /

RegWr
5 l - Ra, Rb and Rw are from instruction’s rs, rt, rd
7| Ra .
rt 5 |Rb 32 fields > .
Control 5 32-bit . . .
Logic rd RWR e * Actual ALV operation and register write should occur
ol OISTErS after decoding the instruction.

University of Notre Dame University of Notre Dame

Datapath for R-Type Instructions

I-Type Arithmetic/Logic Instructions

- Instruction format: (Just I-type Arithmetic Instructions)

RegWr‘l ALUctr
- Ra BusA AN
rt 5 |Rb 32 52 AL 31 2625 2120 1615 0
rd 2 Rw 32-bit BusB — Op(6) | rs(5) | rt(5) | Address/immediate value (16)
Registers 32
Clk —o>
! B?;szw + RTL for arithmetic operations: e.g., ADDI

- Instruction fetch: mem[PC]
- Add operation: reg[rt] <- reg[rs] + SignExt(imm16)
- Go to next instruction: Pc <- PC+ 4

Register timing:
- Register can always be read.

- Register write only happens when RegWr is set to high and at the falling
edge of the clock
+ What does this say about CC time?

University of Notre Dame
CSE 30321 — Lecture 10 — The MIPS Datapath

Datapath for I-Type A/L Instructions

University of Notre Dame
CSE 30321 — Lecture 10 — The MIPS Datapath

I-Type Load/Store Instructions

note that we reuse ALU... . Instruction format: (Just I-type Arithmetic Instructions)
RegWr ALUctr
5 l 31 26 25 2120 16 15 0
—— R
rs 5 N Op (6) | rs(5) rt (5) | Address/Immediate value (16)
rt . , Rb 32
Rw 32-bit
5 Registers . i :
kol RTL for load/store operations: e.g., LW

Destination registers are
in different places in
encoding so need a mux

(rd[15-11] vs. rt[20-16])

University of Notre Dame

32

University of Notre Dame

- Instruction fetch: mem[PC]

- Compute memory address: Addr <- reg[rs] +
SignExt(imm16)

- Load data into register: reg[rt] <- mem[Addr]

- 6o to next instruction: Pc <- PC+ 4

How about store? <|:

same thing, just make 3 step
mem[addr] < reg[rt]

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Datapath for Load/Store Instructions I-Type Branch Instructions
, What happens here?
RegWr //" ALUctr - Instruction format:
<5 Tha 1 / BusA 31 2625 2120 1615 0
rt 2 ::;323_1“_ :"BusB 32 §LU_’ Op(6) | rs(5) | rt(5) | Address/immediate value (16)
5 Registers "3~2~-_, cl— .
cles Wx need a control signal - RTL for branch operations: e.g., BEQ

Extender
MemWr

e 1

i WrEn Addr if (Cond eq 0) then
For sw, need to send DataIn —2— Data . .

data to memory 2 PC <- PC+ 4 + (SIQNEXd(lmm16) X 4)
DataOut +32— Memory R
else : [

For Iw, need to send Clk—of=>

data to register file need to align

University of Notre Dame University of Notre Dame

Datapath for Branch Instructions Next Address Logic

contains PC + 4

| /

Ck—o> PC Next Addr Ck—of> PC
To Instruction Mem | Logic |
gDD
RegWr May not want to " .
5 l BusA change PC if BEQ 0 % Instruction
rs 7 Ra 32 condition not met N Memory
rt 745_, Rb . 32
- Rw 32-bit BusB N (implicitly says: .
Registers . . . “this stuff happens | SignExt
Clleop> 32 >C< — Zero we Il define this next; anyway so we have 9 <—— if branch instruction
32 (will need PC, zero test to be sure we don't 1\16 [AND 0, can automatically
RegDst I ALUSrc condition from ALU) change things we generate control signal
Extender don't want to change”) imm16 Branch Zero
rd rt }16

imm16

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

A Single Cycle Datapath Let’s trace a few instructions:

+ For example...

xeZx ©

ALY

Add fesuit

Add
4 —

Instruction [31-26]
—_—

o Instruction [25 21] Read
Read register 1 Read
Instruction [20 16] Read data 1
register 2
'”S‘E?‘l"o"]—' L5 _ Registers Read Read
) M Write data 2 —| Address ca 1
Instruction u register data M
memory Instruction [15 11 x i X
) [) 1 \é\;r:(ae Data x
Write memery 2
data

Instruction [15 0]

Instruction [5-0]

University of Notre Dame University of Notre Dame

Single-Cycle Implementation

+ Single-cycle, fixed-length clock:

Single cycle versus multi-cycle - How to determine cycle length?

« Calculate cycle time assuming negligible delays except:

— R-type: max {mem + RF + ALU + RF, Add} =6ns
— LW: max{mem + RF + ALU + mem + RF, Add} =8ns
— SW: max{mem + RF + ALU + mem, Add} =7ns
— BEQ: max{mem + RF + ALU, max{Add, mem + Add}} =5ns

What is the CC time?

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath
H H 17 - b
Multiple Cycle Alternative But before, datapath was “multi-cycle”....
- Break an instruction into smaller steps —» R=I[PC]
- Execute each step in one cycle. PC=0 @ PC=PC+1 Will quickly move to
. /4 multi-cycle MIPS
+ Execution sequence: e Y datapath, but will
Decode derive a _single-cycle
version 1st...
op=0000 op=0001 op=w\
- Store values for use in later cycles / ‘
+ Introduce additional “internal” registers Load) Store) (Add >
+ The advantages: RF[ra]=DI[d] D[d]=RF[ra] RF[ra] =
\ RF[rb]+RF]rc]

University of Notre Dame

University of Notre Dame

A Multiple Cycle MIPS Datapath Five Step Execution

1. Instruction Fetch (Ifetch):

IR

Instruction
g register

S el 7 e o] Address » Data . 2. Instruction Decode and Register Read (Decode):

> A
_ ¢ »| Register A J A B
Memory'”Stg;fjt:’tg ¢ Registers ALU|-# > ALUOUL 9 . ALUOut
8 > Register B R .
| Memary | [T TR Il 3. Execution, Memory Address Computation, or Branch
> Data register | o | Rogisler W Mk Completion (Execute):

ALUOut

University of Notre Dame University of Notre Dame
CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Five Step Execution (cont’d) Execution Sequence Summary

4. Memory Access or R-type instruction completion
(MemRead/RegWrite/MemWrite):

Action for R-type | Action for memory-reference Action for Action for
ALUOut M Step name instructions instructions branches jumps
Instruction fetch IR = Mem[PC],
B PC=PC+4
. Instruction A =RF [IR[25:21]],
5. Write-back step (WrBack):)
decode/register fetch B = RF [IR[20:16]],
ALUOut =PC + (sign-extend (IR[1:-0]) << 2)
Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A=B) then |PC=PC [31:28]|
+ Number of cycles for an instruction: computation, branch/ (IR[15:0]) PC=ALUOut | (IR[25:0]<<2)
jump completion
Memory access or R-type| RF [IR[15:11]] = Load: MDR = Mem[ALUOut]
completion ALUOut or
Store: Mem[ALUOut]= B
Memory read completion Load: RF[IR[20:16]] = MDR

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath

Some Simple Questions Multiple Cycle Design
+ How many cycles will it take to execute this code?

Break up the instructions into steps, each step takes a cycle

CSE 30321 — Lecture 10 — The MIPS Datapath

At the end of a cycle

5+5+3+4+4=21

I
+ What is being done during the 8th cycle of execution? ‘ podess :ﬁéﬁ
Compute memory address: 4+$t3 1 e} ok Y
+ In what cycle does the actual addition of $t2 and $t3 takes & 'rﬂreg.g;;m
place? 16

Instrudtion
[15-0

deta
What if multi-cycle regilr
clock period is 2 ns vs.
8 ns for a single cycle?

University of Notre Dame

University of Notre Dame

Single cycle
The HW needed, plus control |mes machine

xeZx ©

)

4 —| h |

Control Logic SR
- Instruction [25 %
(I.e. now, we need to make the HW do what we want it to do - '"smw@]_ O
add, subtract, etc. - when we want it to...) pion L fwe T Y s e
memory | Ingfruction (15 -11] 1x —»;";’:;9 bt 5
Instruction [15 0] 1 [ggn |32 4.—r

extend

Instruction [5-0]

When we talk about control,
we talk about these blocks

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath
Implementing the Control (Part 1) Implementing Control
Implementation Steps: .

Implementation Steps:

1. Identify control inputs and control outputs
_ : 2. Make a control signal table for each cycle
- Derive control logic from the control table 3. Derive control logic from the control table

? . . R .
Do we need a FSM here: - This logic can take on many forms: combinational logic,
This logic can take on many forms: combinational ROMs, microcode, or combinations...

. . N Control outputs:
logic, ROMs, microcode, or combinations... RegDst

MemtoReg
RegWrite
MemRead
MemWrite
ALUSrc
R ALUctr
Control Branch
output Jump

- Identify control inputs and control output (control words)

- Make a control signal table for each cycle

Control
input

Control inputs:
Opcode (5 bits)
Func (6 bits)

University of Notre Dame

University of Notre Dame

Single Cycle Control Input/Output Control Signal Table

R-type (inputs)
Control Inputs: «— Step 1: Idenitfy A /
inputs & outputs Add cuh LW SW / 1 rEA
these are columns fl —
/ Func (input) |100000 |100010 |xxxxxx XXXXXX XXXXXX
* Control Outputs: Op (input) |000000 |[000000 |100011 [101011 |000100
A RegDst 1 1 0 X X
Step 2:
Make a control signal ALUSrc 0 Y 1 1 0
table for each cycle Mem-to-Reg |0 0 1 X X
Reg. Write 1 1 1 0 0
> these are rows Mem. Read 0 o 1 (0] o
Mem. Write (O 0] 0 1 0]
Branch 0 0] 0] 0] 1
ALUOp Add Sub 00 00 01
J (outputs)

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Single cycle =
The HW needed, plus control |wes machine Main control, ALU control
(] /1 F
" unc ALU Uctr
] x Main
N @ o 48 w control | EYOP 6 Control
i 2
/ (opcode) Other cnt. L
317200 signals
Our 2 blocks
of control logic
_’ | | Read e _% Read . .
I‘ //]1_ g * Use OP field to generate ALUOp (encoding)
wi-o T L e Reag | Address Read
o |~GW;‘§ - I * Use Func field and ALUOp to generate ALUctr
/ Instruction [15 0] 16 [ggn |32 m‘r (deCOding)

- Specifically sets 3 ALU control signals
 B-Invert, Carry-in, operation

For MIPS, we have to
build a Main Control Block
and an ALU Control Block AN

Instruction [5-0]

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Main control, ALU control Generating ALUctr
Func * We want these outputs:
oP | ALUctr
] Main ALUOP A ALV ALU Operation | and | or | add | sub | slt and - 00
6 Control Control | 3 : o n or - O1
ALUctr<2:0> | 000|001 | qi0)| 110) 111 ux
. ALUctr<2> = B-negate (C-in & B-invert) Invert B and C-in adder ’(10:
Outputs of main control, ALUctr<1> = Select ALU Output must be a 1 for less - 11
become inputs to ALU control ALUctr<0> = Select ALU Output subtract
R—Type lw sw beq . We have fhese inPuTS." Inpufs OUTEU*S
ALU Operation | "R-type” | add | add | subtract / P 5:0 ALUOp Funct field AlLUctr
[ALUOp<1:0> 10 00 | oo o1 _ We have 8 bits Lunce9:> ALUOp1| ALUORO!F5|F4| F3|F2| F1]FO
of input to our ALU control 36 (and) = 0100 w/sw —> g 0 x| x| x| x| x| x| 010 (add)
Or in other words... block: we need 3 bits of 37 (or) = 0101 beq —> o 1 w x| x [x| x| 110 (sub)
00 = ALU performs add output... 32 (add) =[1 010000 1 % IxIxlolololol010 (add)
01 = ALU performs sub 34 (sub) : 0010 1 x IxIxlololi1lo] 110 (sub)
10 = ALV does what function code says 42 (slt) = 1010 R-type 1 X x|Ixlol1lol| o]|000 (and)
can ignore these 1 X Ix|xlol1]0]1] 001 (or)
(they're the same for all...) 1 X XIxl1loli1[o] 111 (sht)
University of Notre Dame University of Notre Dame
CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath
= Single cycle
The Logic Recall... MIPS machine
. . Inputs Ouffufs
This table is used to — 5
generate the actual ALUOp Funct field ALUctr { M
Boolean logic gates ALUOp1| ALUORO|F5|F4|F3[F2 F1|FO — O\ .
that produce ALUctr. w/sw —=> o 0 X | X| X| X| X|X]|010 (add) Add -
beq —= o 1 Ix]xix]xix|x]110 (sub)) @
Could generate 1 X x|xlololo| o010 (add)
gates by hand, 1 X I xl ol ol 1] o] 110 (sub) 31261
often done w/SW. R-type 1 « IxIxlol 1]l 0l o000 (and)
| 1 X |x{x{ol1]o0]1] 001 (or)
1 x IxIxlilolalol 111 i) s oo Sl
PO address ster Read
(ALUOp) LUOBO X/1 e |nstmcﬂﬁ4?]_‘ Reas data 1
ALUO 1/0 L’ or ALUC*P<2> Instruction [3170]'_'/ OM \r/t\%/gi‘:te:?egmers d;:azd P Address Tiz?g 1
F30/X R and 1/0 1/1 ALUctr memory struction (15 41)_| X | Wite Data
(func<5:05) 110/110 / wae memory o
[—— @ ALUctr<1> > Instruction [15 0] 1 [sign |32 ‘I
>0 or /1 > extend
N Ex: ALUctr<2> Recall, for MIPS, we have to ,
and AlUctr<0; (SUB/BEQ) build a Main Control Block Lisnton o0
roorx | °" [o/x 0/0 0/0 and an ALU Control Block

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Well, here’s what we did... ettt Implementing the Control (Part 2)

+ Value of control signals is dependent upon:

We came up with
the information to
generate this logic
which would fit here

in the datapath.

+ How to represent all the information?

— microprogramming
- Realization of a control unit is independent of the
representation used

(ALUOP)

(func<5:0>)

ALUctr<0>

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath

CSE 30321 — Lecture 10 — The MIPS Datapath

Finite State Diagram Microprogramming as an Alternative

+ Control unit can easily reach thousands of states with
hundreds of different sequences.

+ Flexibility may be needed in the early design phase
+ An alternative: Microcode.

microinstructions

University of Notre Dame

University of Notre Dame

Foreshadowing: The Net Result

CSE 30321 — Lecture 10 — The MIPS Datapath

Control Logic (in ROM)

Output <

+ Group the control signals according to how they are used

Input
8338383
Instruction Register

Opcode Field

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath

Microinstruction Format (1)

+ For the 5-cycle MIPS organization:

Memory

Instruction Register

PC
Register File
ALU

« Group them as follows:

University of Notre Dame

Sequencing

Memory Instruction Register
PC
Register File

For ALU Control

Microprogramming as an Alternative

+ Each state - one
microinstruction

+ State transitions >

microinstruction sequencing
+ Setting up control signals 2>

executing microinstructions
+ To specify control, we just

need to write microprograms

(or microcode)

(cont’d)

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath

Microinstruction Format (2)

Field name Value |[Signals active Comment
Add ALUOp = 00 | Cause the ALU to add.
ALU control | Sub ALUOp =01 | Cause the ALU to subtract; this implements
the compare for branches.
Func code ALUOp =10 | Use the instruction's func to determine ALU control.
SRC1 PC ALUSrcA = 0| Use the PC as the first ALU input.
A ALUSrcA = 1| Register A is the first ALU input.
B ALUSrcB= 00 Register B is the second ALU input.
SRC2 4 ALUSrc = 01 | Use 4 as the second ALU input.
Extend |ALUSrcB= 10 Use output of the sign ext unit as the 2nd ALU input.
Extshft | ALUSrcB= 11 Use output of shift-by-two unit as the 2nd ALU input.
Read Read two registers using the rs and rt fields of the IR
and putting the data into registers A and B.
Write RegWrite, Write a register using the rd field of the IR as the
Register ALU RegDst =1, register number and the contents of the ALUOut
control MemtoReg=0 as the data.
Write RegWrite, Write a register using the rt field of the IR as the
MDR RegDst =0, register number and the contents of the MDR as
MemtoReg=1 the data.

University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Field name, Vvalue Signals active Comment
Read PC |MemRead, Read memory using the PC as address; IFetch: IR = Mem[PC], PC = PC+4
lorD = 0 write result into IR (and the MDR).
Memory Read ALU |MemRead, | Read memory using the ALUOut as address; PCWrite: 1
lorD = 1 write result into MDR. PCWriteCond:
Write ALU | MemWrite, Write memory using the ALUOut as address, lorD: 0 Microinstruction:
= contents of B as the data. D
lorD =1 MemRe-ad. 1| [ALUctSRCT[SRC2 RegCtrl[Memory|PCWrite [Sequen
ALU PCSource 00| Write the output of the ALU into the PC. IRWrite: 1
PCWrite MemtoReg: Add | PC| 4 - |ReadPC| ALU | Seq
PC write | ALUOut- | PCSource=01, If the Zero output of the ALU is active, write the PC PCSource:
control cond | pcwriteCond with the contents of the register ALUOuL. ALUOp: 00

jump PCSource=10,Write the PC with the jump address from ALUSrcB: 01

address | pcwrite the instruction. ALUSrcA: 0
Seq AddrCtl = 11 | Choose the next microinstruction sequentially. Eeg‘g’r;te:
Sequencing Fetch AddrCtl = 00 | Go to the first microinstruction to a new instruction. egbst.

Dispatch 1| AddrCtl = 01 | Dispatch using the ROM 1. AddrCtri: 1

Dispatch 2| AddrCtl = 10 | Dispatch using the ROM 2.

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath
Sample Microinstruction (2) Put It All Together
Decode: A= RF[IR[25:21]], B= RF[IR[20:16]], ALU Register e
ALUOut = PC + Sign_Ext(IR[15:0]) << 2); Label | control |SRC1| SRC2| control | Memory control | Sequencing
PCWrite: Fetch Add PC 4 Read PC_|ALU Seq
PCWrite.Cond' Add PC Extshft|Read Dispatch 1
lorD: . Microinstruction: Mem1 |Add A Extend Dispatch 2
MemRead: LW2 Read ALU Seq
IRWrite: ALUctrl| SRC1| SRC2|RegCtrl Memory|PCWrite|Sequen Write MDR Fetch
2 sSw2 Write ALU Fetch
MemtoReg: Add | PC Extshf| Read Disp 1 e ete
PCSource: Rformat1 [Func code |A B Seq
ALUOp: 00 Write ALU Fetch
ALUSrcB: 11 BEQ1 Sub A B ALUOut-cond [Fetch
ALUSTrcA: 0 JUMP1 Jump address|Fetch
RegWrite:
RegDst:

AddrCtrl: 01

University of Notre Dame University of Notre Dame

Control Implementations Exceptions

+ Exceptions: unexpected events from within the processor

Could use a
Control Logic

pr'ogr'ammable * Interrupts: unexpected events from outside of the processor

ROM
Output < + Consequence: alter the normal flow of instruction execution
+ Key issues:

Input - save the address of the offending instruction in the EPC
I * ~ - transfer control to OS at some specified address
§388838 - Exception type indication:
Another reason that register
Instruction Register naming conventions are
Opcode Field important.

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 10 — The MIPS Datapath CSE 30321 — Lecture 10 — The MIPS Datapath

Exception Handling FSM with

+ Types of exceptions considered: .
Exception

Handling

Jp—r— nstruction decode!

register fetch

MemRead

MIPS implementation:

+ undefined instruction: Cause register =0
- arithmetic overflow: Cause register = 1

+ Detection: "

RegDst=1 ' Overflow
RegWrte
MemtoReg = 0

ALUSIEa = 10 SrcB = 00 o
Source =01
3 &, |
s &
3 %
> L
Memory Memory
O} access access R-type completion
3 5 7 !

« Action:

\ Write-back step Overfiow
4
RegDst=0
RegWrite -
MemtoReg = 1

University of Notre Dame

University of Notre Dame

CSE 303

— Lecture 10 — The MIPS Datapa

Datapath with Exception Handling

- pC

o

¥

N -
xc=
L

TN Jump
{ shiet \ address
26 [Shift| og
[Instruction [25-0] left 2 | [31-0]
Instruction N/
G [21-28] A PC [31-28]
M Instruction Read Le/0
u Address [25-21] register 1 p_ oy M
X) - A u -
1) Instruction Read data 1 X
-~ Memory = - N g) { Zero
N [20-18] /A" | register 2 ~— \"ALU
MemData Instruction |4 M| |, . Registers /-0 ALY
Instruction| u s Write Read N resuit
| write . M5-11] | X register o005 —.E’o—.* 0
data Instruction | F———=\1 /
register — Write
~0L data
Instruction M 0—tof0
g u -
(15-0] X ™
Memory || I Vol /N ALU 1—+]
data | Sign [shift | e
register | extend | left2 | contro
\ / -/
lns(ruciiiﬁn [5-0]

iversity of Notre D

