
University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath! 1!

Lecture 10 "
The MIPS Datapath!

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

Suggested Readings!
•! Readings!

–! H&P: Chapter 4.1-4.4!

2!

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the

right application!

Writing more !

efficient code!

Multicore processors

and programming!

CSE 30321!

Goal:"

Describe the fundamental components required in

a single core of a modern microprocessor as well
as how they interact with each other, with main

memory, and with external storage media."

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

The organization of a computer!

Control"

Datapath"

Memory"
Input"

Output"

Von Neumann Model: !

•! Stored-program machine instructions are represented as numbers"

•! Programs can be stored in memory to be read/written just like "
 numbers."

Processor"

Compiler"
Today"

we#ll talk"

about these"

things"

Focus of lectures 5-9"

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

Review: Functions of Each Component!
•! Datapath: performs data manipulation operations!

–! arithmetic logic unit (ALU)!

–! floating point unit (FPU)!

•! Control: directs operation of other components!

–! finite state machines!

–! micro-programming!

•! Memory: stores instructions and data!

–! random access v.s. sequential access!

–! volatile v.s. non-volatile!

–! RAMs (SRAM, DRAM), ROMs (PROM, EEPROM), disk!

–! tradeoff between speed and cost/bit!

•! Input/Output and I/O devices: interface to environment!

–! mouse, keyboard, display, device drivers!

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

The MIPS Subset!
•! To simplify things a bit we#ll just look at a few instructions:!

–! memory-reference: lw, sw!

–! arithmetic-logical: add, sub, and, or, slt!

–! branching: beq, j!

•! Organizational overview:!

–! fetch an instruction based on the content of PC!

–! decode the instruction!

–! fetch operands!

•! (read one or two registers)!

–! execute !

•! (effective address calculation/arithmetic-logical operations/

comparison)!

–! store result !

•! (write to memory / write to register / update PC)!

With Von Neumann, "

RISC model do similar"

things for each"

instruction "

Most common"

instructions"

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath! 7!

Board discussion:!
•! Let#s derive the MIPS datapath…!

A!

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

Implementation Overview!

•! Abstract / Simplified View:"

•! 2 types of signals: !Data and control!

•! Clocking strategy: !Derived datapath is single cycle;!

! ! ! ! ! ! ! !did not talk about internal storage!

A L U

PC Address

Instruction
Instruction
Memory

Ra

Rb

Rw

Data

Register
File Data

Memory

Address

Data

Clk

Clk Clk

Clk

simplest view of

Von Neumann, RISC µP

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

Single Cycle Implementation!
•! Each instruction takes one cycle to complete.!

•! We wait for everything to settle down, and the right
thing to be done!

–! ALU might not produce “right answer” right away!

•! Cycle time determined by length of the longest path!

PC"
instr. fetch & "
execute"

University of Notre Dame!

CSE 30321 – Lecture 10 – The MIPS Datapath!

10

But before, datapath was “multi-cycle”….!

Decode

Fetch
Init

PC=0
IR=I[PC]
PC=PC+1

Load

RF[ra]=D[d]

op=0000

Store Add

RF[ra] =

 RF[rb]+ RF[rc]

D[d]=RF[ra]

op=0001 op=0010

Will quickly move to

multi-cycle MIPS

datapath, but will

derive a single-cycle

version 1st…"

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Review: "

Derivation of Single Cycle Datapath!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Instruction Word
32

Next Addr
Logic

Instruction Fetch Unit!

•! Fetch the instruction: mem[PC] ,

•! Update the program counter:

–! sequential code: PC <- PC+4

–! branch and jump: PC <- “something else”

PC

Instruction
Memory

Address

Clk

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

During Decode…!

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

•! Take bits from instruction encoding in IR and send to
different parts of datapath

e.g. R-type, Add encoding:

Control
Logic

32
32-bit

Registers
Clk

Ra

Rw

Rb

5
rs

rd

rt 5

5

RegWr

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Let#s say we want to fetch…"

…an R-type instruction (arithmetic)!
•! Instruction format:

•! RTL:
–! Instruction fetch: mem[PC]

–! ALU operation: reg[rd] <- reg[rs] op reg[rt]

–! Go to next instruction: Pc <- PC+ 4

•! Ra, Rb and Rw are from instruction’s rs, rt, rd
fields ! sort of like passing args into a function.

•! Actual ALU operation and register write should occur
after decoding the instruction.

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

So IR " Memory(PC)

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

BusA

32 ALU

Datapath for R-Type Instructions!

•! Register timing:
–! Register can always be read.
–! Register write only happens when RegWr is set to high and at the falling

edge of the clock
•! What does this say about CC time?

32
32-bit

Registers
Clk

Ra

Rw

Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

BusW
32

ALUctr

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

I-Type Arithmetic/Logic Instructions!

•! Instruction format:

•! RTL for arithmetic operations: e.g., ADDI
–! Instruction fetch: mem[PC]

–! Add operation: reg[rt] <- reg[rs] + SignExt(imm16)

–! Go to next instruction: Pc <- PC+ 4

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

(Just I-type Arithmetic Instructions)

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

BusA

32 ALU

Datapath for I-Type A/L Instructions!

32
32-bit

Registers
Clk

Ra

Rw

Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

BusW
32

MUX

M
U
X

32

Extender

16

imm16

rt

ALUSrc

RegDst

ALUctr

BusW

32

Destination registers are
in different places in

encoding so need a mux

(rd[15-11] vs. rt[20-16])

must “zero out” 1st 16 bits…

note that we reuse ALU…

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

I-Type Load/Store Instructions!

•! Instruction format:

•! RTL for load/store operations: e.g., LW
–! Instruction fetch: mem[PC]

–! Compute memory address: Addr <- reg[rs] +
SignExt(imm16)

–! Load data into register: reg[rt] <- mem[Addr]

–! Go to next instruction: Pc <- PC+ 4

•! How about store?

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

same thing, just make 3rd step
mem[addr] ! reg[rt]

(Just I-type Arithmetic Instructions)

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Datapath for Load/Store Instructions!

BusA

32 ALU 32
32-bit

Registers
Clk

Ra

Rw
Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

MUX

M
U
X

32

Extender

16

imm16

rt

ALUSrc RegDst

ALUctr

 Data
 Memory

Clk

DataIn
32

MemWr

WrEn Addr

need a control signal

For lw/sw send address
from ALU to data memory

DataOut 32

For sw, need to send
data to memory

For lw, need to send
data to register file

What happens here?

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

I-Type Branch Instructions!

•! Instruction format:

•! RTL for branch operations: e.g., BEQ
–! Instruction fetch: mem[PC]

–! Compute conditon: Cond <- reg[rs] - reg[rt]

–! Calculate the next instruction’s address:

 if (Cond eq 0) then

 PC <- PC+ 4 + (SignExd(imm16) x 4)

 else ?

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

need to align

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Datapath for Branch Instructions!

BusA

32 ALU 32
32-bit

Registers
Clk

Ra

Rw
Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

MUX

M
U
X

32

Extender

16 rt

ALUSrc RegDst

ALUctr

Next Addr
Logic

PC Clk

Zero

imm16

To Instruction Mem

we’ll define this next;
(will need PC, zero test

condition from ALU)

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Next Address Logic!

ADD

M
U
X

SignExt

16

“0”

PC Clk

imm16
Branch Zero

Instruction
Memory

May not want to
change PC if BEQ
condition not met

(implicitly says:
“this stuff happens
anyway so we have
to be sure we don’t
change things we

don’t want to change”)

if branch instruction
AND 0, can automatically
generate control signal

contains PC + 4

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

A Single Cycle Datapath!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Let"s trace a few instructions:!

•! For example…!

–! Add !$5, $6, $7!

–! SW !0($9), $10!

–! Sub !$1, $2, $3!

–! LW !$11, 0($12)!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Single cycle versus multi-cycle!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Single-Cycle Implementation!

•! Single-cycle, fixed-length clock:!

–! CPI = 1!

–! Clock cycle = propagation delay of the longest datapath
operations among all instruction types!

–! Easy to implement!

•! How to determine cycle length?!

•! Calculate cycle time assuming negligible delays except:!

–! memory (2ns), ALU and adders (2ns), register file access (1ns)!

–! R-type: max {mem + RF + ALU + RF, Add} ! != 6ns!

–! LW: max{mem + RF + ALU + mem + RF, Add} ! != 8ns!

–! SW: max{mem + RF + ALU + mem, Add} ! ! != 7ns!

–! BEQ: max{mem + RF + ALU, max{Add, mem + Add}} != 5ns!

What is the CC time?!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Multiple Cycle Alternative!

•! Break an instruction into smaller steps !

•! Execute each step in one cycle.!

•! Execution sequence:!

–! Balance amount of work to be done!

–! Restrict each cycle to use only one major functional unit!

–! At the end of a cycle!

•! Store values for use in later cycles!

•! Introduce additional “internal” registers!

•! The advantages:!

–! Cycle time much shorter!

–! Diff. inst. take different # of cycles to complete!

–! Functional unit used more than once per instruction!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

But before, datapath was “multi-cycle”….!

Decode

Fetch

Init

PC=0

IR=I[PC]

PC=PC+1

Load

RF[ra]=D[d]

op=0000

Store Add

RF[ra] =

 RF[rb]+ RF[rc]

D[d]=RF[ra]

op=0001 op=0010

Will quickly move to

multi-cycle MIPS

datapath, but will

derive a single-cycle

version 1st…!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

A Multiple Cycle MIPS Datapath!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Five Step Execution !
1. Instruction Fetch (Ifetch): !

–! Fetch instruction at address ($PC) !

–! Store the instruction in register IR!

–! Increment PC!

2. Instruction Decode and Register Read (Decode):!

–! Decode the instruction type and read register!

–! Store the register contents in registers A and B!

–! Compute new PC address and store it in ALUOut!

3. Execution, Memory Address Computation, or Branch
Completion (Execute):!
–! Compute memory address (for LW and SW), or!

–! Perform R-type operation (for R-type instruction), or!

–! Update PC (for Branch and Jump)!

–! Store memory address or register operation result in
ALUOut!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Five Step Execution (cont"d)!

4. Memory Access or R-type instruction completion
(MemRead/RegWrite/MemWrite):!

–! Read memory at address ALUOut and store it in MDR!

–! Write ALUOut content into register file, or!

–! Write memory at address ALUOut with the value in B!

5. Write-back step (WrBack):!

–! Write the memory content read into register file!

•! Number of cycles for an instruction:!

–! R-type: 4!

–! lw: 5!

–! sw: 4!

–! Branch or Jump: 3 ! !

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Execution Sequence Summary!

Step name

Action for R-type

instructions

Action for memory-reference

instructions

Action for

branches

Action for

jumps

Instruction fetch IR = Mem[PC],

PC = PC + 4

Instruction A =RF [IR[25:21]],

decode/register fetch B = RF [IR[20:16]],

ALUOut = PC + (sign-extend (IR[1:-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A =B) then PC = PC [31:28] |

computation, branch/ (IR[15:0]) PC = ALUOut (IR[25:0]<<2)

jump completion

Memory access or R-type RF [IR[15:11]] = Load: MDR = Mem[ALUOut]

completion ALUOut or

Store: Mem[ALUOut]= B

Memory read completion Load: RF[IR[20:16]] = MDR

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Some Simple Questions!
•! How many cycles will it take to execute this code? !

 ! ! !lw $t2, 0($t3) "
! ! !lw $t3, 4($t3) "
! ! !beq $t2, $t3, Label #assume branch is not taken "
! ! !add $t5, $t2, $t3 "
! ! !sw $t5, 8($t3) "
Label: !...!

 5+5+3+4+4=21!

•! What is being done during the 8th cycle of execution?!

 Compute memory address: 4+$t3!

•! In what cycle does the actual addition of $t2 and $t3 takes
place? 16 !"

What if multi-cycle
clock period is 2 ns vs.
8 ns for a single cycle?!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Multiple Cycle Design!
•! Break up the instructions into steps, each step takes a cycle!

–! balance the amount of work to be done!

–! restrict each cycle to use only one major functional unit!

•! At the end of a cycle!

–! store values for use in later cycles (easiest thing to do)!

–! introduce additional “internal” registers "

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Control Logic!

(I.e. now, we need to make the HW do what we want it to do -
add, subtract, etc. - when we want it to…)!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

The HW needed, plus control!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

When we talk about control,
we talk about these blocks

Single cycle
MIPS machine

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Implementing the Control (Part 1)!

•! Implementation Steps:

–! Identify control inputs and control output (control words)

–! Make a control signal table for each cycle

–! Derive control logic from the control table

•! Do we need a FSM here?

!"#$%"&'

()$*'

+)$)'

()$*'

Control

input

Control

output

Control inputs:

 Opcode (5 bits)

 Func (6 bits)

Control outputs:

 RegDst

 MemtoReg

 RegWrite

 MemRead

 MemWrite

 ALUSrc

 ALUctr

 Branch

 Jump

This logic can take on many forms: combinational

logic, ROMs, microcode, or combinations…

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Implementing Control!

•! Implementation Steps:
1." Identify control inputs and control outputs

2." Make a control signal table for each cycle

3." Derive control logic from the control table
–! This logic can take on many forms: combinational logic,

ROMs, microcode, or combinations…

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Single Cycle Control Input/Output!

•! Control Inputs:
–! Opcode (6 bits)
–! How about R-type instructions?

•! Control Outputs:
–! RegDst
–! ALUSrc
–! MemtoReg
–! RegWrite
–! MemRead
–! MemWrite
–! Branch
–! Jump
–! ALUctr

these are columns

these are rows

Step 2:
Make a control signal
table for each cycle

Step 1: Idenitfy
inputs & outputs

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Control Signal Table!

Add Sub LW SW BEQ

Func (input) 100000 100010 xxxxxx xxxxxx xxxxxx

Op (input) 000000 000000 100011 101011 000100

RegDst 1 1 0 X X

ALUSrc 0 0 1 1 0

Mem-to-Reg 0 0 1 X X

Reg. Write 1 1 1 0 0

Mem. Read 0 0 1 0 0

Mem. Write 0 0 0 1 0

Branch 0 0 0 0 1

ALUOp Add Sub 00 00 01

R-type

(outputs)

(inputs)

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

The HW needed, plus control!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

For MIPS, we have to
build a Main Control Block
and an ALU Control Block

Single cycle
MIPS machine

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Main control, ALU control!

•! Use OP field to generate ALUOp (encoding)
–!Control signal fed to ALU control block

•! Use Func field and ALUOp to generate ALUctr
(decoding)
–!Specifically sets 3 ALU control signals

•! B-Invert, Carry-in, operation

Main
Control

ALU
Control

ALU

ALUOp

Func

OP
ALUctr

6

6

2

3

(opcode)

Our 2 blocks
of control logic

Other cnt.
signals

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Main control, ALU control!

Main
Control

ALU
Control

ALU

ALUOp

Func

OP
ALUctr

6

6

2

3

Or in other words…
00 = ALU performs add
01 = ALU performs sub
10 = ALU does what function code says

R-type lw sw beq

ALU Operation “R-type” add add subtract

ALUOp<1:0> 10 00 00 01

Outputs of main control,
become inputs to ALU control

We have 8 bits
of input to our ALU control
block; we need 3 bits of

output…

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Generating ALUctr!

•! We want these outputs:

ALUctr<2> = B-negate (C-in & B-invert)
ALUctr<1> = Select ALU Output
ALUctr<0> = Select ALU Output

ALU Operation and or add sub slt

ALUctr<2:0> 000 001 010 110 111 mux

 and - 00

 or - 01

adder - 10

less - 11

Invert B and C-in
must be a 1 for

subtract

36 (and) = 1 0 0 1 0 0
37 (or) = 1 0 0 1 0 1
32 (add) = 1 0 0 0 0 0
34 (sub) = 1 0 0 0 1 0
42 (slt) = 1 0 1 0 1 0

can ignore these
(they’re the same for all…)

func<5:0>

•! We have these inputs…

ALUOp Funct field ALUctr
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X
0 1 X X X X X X
1 X X X 0 0 0 0
1 X X X 0 0 1 0
1 X X X 0 1 0 0
1 X X X 0 1 0 1
1 X X X 1 0 1 0

Inputs

lw/sw
beq

R-type

010 (add)
110 (sub)

010 (add)

110 (sub)

000 (and)

001 (or)

111 (slt)

Outputs

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

The Logic!

Ex: ALUctr<2>

(SUB/BEQ)

or
and

or

and
or

(func<5:0>)

F0

F1

F2

F3

(ALUOp)
ALUOp0

ALUctr<2>

ALUctr<1>

ALUctr<0>

ALUctr

ALUOp1

Could generate
gates by hand,

often done w/SW.

ALUOp Funct field ALUctr
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X
0 1 X X X X X X
1 X X X 0 0 0 0
1 X X X 0 0 1 0
1 X X X 0 1 0 0
1 X X X 0 1 0 1
1 X X X 1 0 1 0

Inputs

lw/sw
beq

R-type

010 (add)
110 (sub)

010 (add)

110 (sub)

000 (and)

001 (or)

111 (slt)

Outputs
This table is used to
generate the actual
Boolean logic gates

that produce ALUctr.

1/0

X/1

0/X

0/X

1/X

0/X 0/X 0/0

1/0 1/1

1/1

0/0

110/110

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Recall…!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

Recall, for MIPS, we have to
build a Main Control Block
and an ALU Control Block

Single cycle
MIPS machine

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Well, here"s what we did…!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

Single cycle
MIPS machine

or
and

or

and
or

(func<5:0>)

F0

F1

F2

F3

(ALUOp)
ALUOp0

ALUctr<2>

ALUctr<1>

ALUctr<0>

ALUctr

ALUOp1

We came up with
the information to
generate this logic

which would fit here
in the datapath.

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Implementing the Control (Part 2)!

•! Value of control signals is dependent upon:!

–! what instruction is being executed!

–! which step is being performed!

•! How to represent all the information?!

–! finite state diagram!

–! microprogramming!

•! Realization of a control unit is independent of the
representation used!

–! Control outputs: random logic, ROM, PLA!

–! Next-state function: same as above or an explicit
sequencer!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Finite State Diagram!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Microprogramming as an Alternative!

•! Control unit can easily reach thousands of states with

hundreds of different sequences.!

–! A large set of instructions and/or instruction classes (x86)!

–! Different implementations with different cycles per
instruction!

•! Flexibility may be needed in the early design phase!

•! An alternative: Microcode.!

–! Treat the set of control signals to be asserted in a state as
an instruction to be executed (referred to as

microinstructions)!

–! Treat state transitions as an instruction sequence!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Foreshadowing: The Net Result!

P C W r i t e

P C W r i t e C o n d
I o r D

M e m t o R e g

P C S o u r c e

A L U O p

A L U S r c B

A L U S r c A

R e g W r i t e

R e g D s t

O
 p
 5

O
 p
 4

O
 p
 3

O
 p
 2

O
 p
 1

O
 p
 0

I R W r i t e

M e m R e a d

M e m W r i t e

N S 3
N S 2
N S 1
N S 0

S
 3

S
 2

S
 1

S
 0

S t a t e r e g i s t e r

Control Logic (in ROM)

Output

Input

Instruction Register
Opcode Field

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Microprogramming as an Alternative

(cont"d)!
•! Each state ! one

microinstruction!

•! State transitions !

microinstruction sequencing!

•! Setting up control signals !

executing microinstructions!

•! To specify control, we just

need to write microprograms

(or microcode) !

Microinst S0

Microinst S1

Microinst

Microinst

S2

S3

N<0

N>=0

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Microinstruction Format (1)!

•! Group the control signals according to how they are used!

•! For the 5-cycle MIPS organization:!
–! Memory: IorD, MemRead, MemWrite!

–! Instruction Register: IRWrite!

–! PC: PCWrite, PCWriteCond, PCSource!

–! Register File: RegWrite, MemtoReg, RegDst!

–! ALU: ALUSrcA, ALUSrcB, ALUOp!

•! Group them as follows:!

–! Memory (for both Memory and Instruction Register)!

–! PC write control (for PC)!

–! Register control (for Register File)!

–! ALU control!

–! SRC1 !

–! SRC2!

–! Sequencing!

For ALU Control!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Microinstruction Format (2)!
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.

ALU control Sub ALUOp = 01 Cause the ALU to subtract; this implements

the compare for branches.

Func code ALUOp = 10 Use the instruction's func to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.

B ALUSrcB= 00 Register B is the second ALU input.

SRC2 4 ALUSrc = 01 Use 4 as the second ALU input.

Extend ALUSrcB= 10 Use output of the sign ext unit as the 2nd ALU input.

Extshft ALUSrcB= 11 Use output of shift-by-two unit as the 2nd ALU input.

Read Read two registers using the rs and rt fields of the IR

and putting the data into registers A and B.

Write

ALU

RegWrite, Write a register using the rd field of the IR as the

register number and the contents of the ALUOut
as the data.

Register RegDst = 1,

control MemtoReg=0

Write

MDR
RegWrite, Write a register using the rt field of the IR as the

register number and the contents of the MDR as
the data.

RegDst = 0,

MemtoReg=1

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Microinstruction Format (3)!
Field name Value Signals active Comment

Read PC MemRead, Read memory using the PC as address;

write result into IR (and the MDR). lorD = 0

Memory Read ALU MemRead, Read memory using the ALUOut as address;

write result into MDR. lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address,

contents of B as the data. lorD = 1

ALU PCSource 00 Write the output of the ALU into the PC.

PCWrite

PC write

control
ALUOut-

cond
PCSource=01, If the Zero output of the ALU is active, write the PC

with the contents of the register ALUOut. PCWriteCond

jump

address
PCSource=10, Write the PC with the jump address from

 the instruction. PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.

Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.

Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Sample Microinstruction (1)!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Sample Microinstruction (2)!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Put It All Together!

Label

ALU

control SRC1 SRC2

Register

control Memory

PCWrite

control Sequencing

Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

LW2 Read ALU Seq

Write MDR Fetch

SW2 Write ALU Fetch

Rformat1 Func code A B Seq

Write ALU Fetch

BEQ1 Sub A B ALUOut-cond Fetch

JUMP1 Jump address Fetch

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Control Implementations!

P C W r i t e

P C W r i t e C o n d
I o r D

M e m t o R e g

P C S o u r c e

A L U O p

A L U S r c B

A L U S r c A

R e g W r i t e

R e g D s t

O
 p
 5

O
 p
 4

O
 p
 3

O
 p
 2

O
 p
 1

O
 p
 0

I R W r i t e

M e m R e a d

M e m W r i t e

N S 3
N S 2
N S 1
N S 0

S
 3

S
 2

S
 1

S
 0

S t a t e r e g i s t e r

Control Logic

Output

Input

Instruction Register
Opcode Field

Could use a
programmable

ROM

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Exceptions!

•! Exceptions: unexpected events from within the processor!

–! arithmetic overflow!

–! undefined instruction!

–! switching from user program to OS!

•! Interrupts: unexpected events from outside of the processor!

–! I/O request!

•! Consequence: alter the normal flow of instruction execution !

•! Key issues:!

–! detection!

–! action!
•! save the address of the offending instruction in the EPC!

•! transfer control to OS at some specified address!

•! Exception type indication:!

–! status register!

–! interrupt vector!

Another reason that register
naming conventions are
important.

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Exception Handling !
•! Types of exceptions considered:!

–! undefined instruction!

–! arithmetic overflow!

•! MIPS implementation:!

–! EPC: 32-bit register, EPCWrite !

–! Cause register: 32-bit register, CauseWrite!
•! undefined instruction: Cause register = 0!

•! arithmetic overflow: Cause register = 1!

–! IntCause: 1 bit control !

–! Exception Address: C0000000 (hex)!

•! Detection:!

–! undefined instruction: op value with no next state!

–! arithmetic overflow: overflow from ALU!

•! Action:!
–! set EPC and Cause register!

–! set PC to Exception Address!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

FSM with

Exception

Handling!

CSE 30321 – Lecture 10 – The MIPS Datapath!

University of Notre Dame!

Datapath with Exception Handling!

