
CSE 30321 – Lecture 11 – In Class Example Handout 
 
Question 1: 
First, we briefly review the notion of a clock cycle (CC).  Generally speaking a CC is the amount of time 
required for (i) a set of inputs to propagate through some combinational logic and (ii) for the output of 
that combinational logic to be latched in registers.  (The inputs to the combinational logic would usually 
come from registers too.)   
 
Thus, for the MIPS, single cycle datapath that was derived in class last week, the “combinational logic” 
referred to above would really be the instruction memory, register file, ALU, data memory, and register 
file.  The inputs come from instruction memory and the output might be the main register file (in the 
case of an ALU instruction) or the PC (in the case of a branch instruction). 
 
Putting the MIPS datapath aside, its generally a good idea to minimize the logic on the critical path 
between two registers – as this will help shorted the required clock cycle time, will result in an increase 
in clock rate, which generally means better “performance”. 
 
To be more quantitative, hypothetically, letʼs say that there are two gate mappings that can implement 
the logic function that we need to evaluate.  The inputs to these gates would come from 1 set of 
registers, and the outputs from these gates would be stored in another set of registers.  The 
composition of each is specified in the table below: 
 

  AND gates NOR gates XOR gates 
Design 1 7 17 13 
Design 2 24 4 7 

 
Furthermore, the delay associated with each gate is also listed below: 
 

AND gate NOR gate XOR gate 
2 picoseconds* 1 picosecond 3 picoseconds 

 
Which design will lead to the shorted CC time? 
 
Design 1:  = (7 ANDs * 2 ps/AND) + (17 NORs * 1 ps/NOR) + (13 XORs * 3 ps/XOR) 
  = 14 ps + 17 ps + 39 ps = 70 ps 
 
Design 2:  = (24 ANDs * 2 ps/AND) + (4 NORs * 1 ps/NOR) + (7 XORs * 3 ps/XOR) 
  = 48 ps + 4 ps + 21 ps = 73 ps 
 
What is the clock rate for that design (in GHz)? 

- Clock rate = 1 / CC 
- Clock rate = 1 / 70ps 
- Clock rate = 1 / (70*10-12) 
- Clock rate = 1.428 x 1011 Hz 
- Clock rate = 1.428 x 1011 Hz * (1 GHz / 109 Hz) 
- Clock rate = 14.3 GHz 

 
Take Away:  The longest critical path determines the clock cycle time 
 
 



Question 2: 
Without looking back in your notes, write out the register transfer language (RTL) for a generic MIPS R-
type, I-type, and J-type instruction.  (Donʼt be overly concerned with getting all of the sign extensions, 
etc. exactly right.) 
 
For your reference, the instruction encodings for the R, I , and J instruction types are shown below. 
 
R-Type 

 
I-Type 

 
J-Type 

 
Answers: 
 

 Your Solution My Solution 
R-Type   

- get  Mem(PC) 
- Reg(Rd)  Reg(Rs) op Reg(Rt) 
- PC  PC + 4 
 
 
 
 
 

I-Type (lw/sw)   
- get Mem(PC) 
- Addr  Reg(Rs) + <0000h> <imm(15:0)> 
- if lw 
   - Reg(Rt)  Mem(Addr) 
- if sw 
   - Mem(addr)  Reg(Rs) 
- PC  PC + 4 
 
(?) – lw or sw = longer latency? 
(?) – # of register/memory transfers in each? 
 



I-Type (beq)   
- get  Mem(PC) 
- Cond  Reg(Rs) – Reg(Rt) 
- if cond met 
   - PC  new value 
   - PC  PC + 4 + signext(imm(15:0))x4 
- if cond not met 
   - PC  PC + 4 
 
 

J-Type   
- get  Mem(PC) 
- PC  <PC extension> <IR(25:0)>  
 
 
 

 
Take Away:  Thereʼs a lot of stuff common between instructions!  For example: 

- For R-Type: 
o Everything the same except what the ALU does 

- Looking at R-type vs. I-type 
o Still, lots of stuff the same – register reads, ALU operation, register write back 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Question 3: 
In class last week, you derived the single cycle datapath for the MIPS ISA.  A block diagram is shown 
below: 
 

 
Assume that the following latencies would be associated with the datapath above: 
 

Operation Time 
Get instruction encoding – Mem(PC) 2 ns 

Get data from register file 2 ns 
Perform operation on data in registers 3 ns 

Increment PC by 4 1 ns 
Change PC depending on conditional 

instruction 1 ns 

Access data memory 2 ns 
Write data back to the register file 
(from the ALU or from memory) 2 ns 

 
 
 
 
 
 
 
 
 
 
 

 

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31  26]

4

16 32Instruction [15  0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15  11]

ALU
control

Shift
left 2

ALU
Address



Questions: 
(a) What type/class of instruction in the MIPS ISA will set CC time (and hence clock rate)?  (e.g. 

ALU type, conditional branch, load, store, etc.) 
(b) Given the latencies in the above table, what would the clock rate be for our single cycle 

datapath?   
 
Note:  for both (a) and (b), pay particularly close attention to the diagram shown above and try to define 
the critical path. 
 
Answers: 
First, the load instruction sets the critical path.  For the load, we must: 

- Get the instruction encoding from memory 
- Read data from the register file 
- Perform an ALU operation 
- Access data memory 
- Write data back to the register file 

 
Note that we can ignore the overhead associated with PC  PC + 4 b/c this would happen in parallel 
with operations 
 
Second, the clock rate would just be the inverse of the some of the delays: 

- (2 ns + 2 ns + 3 ns + 2 ns + 2 ns) 
- 11 ns 
- 1 / 11 ns = 91 MHz 

 
Take Away:   

- In a single cycle implementation, the instruction with the longest critical path sets the clock rate 
for EVERY instruction. 

- Think about Amdahlʼs Law – this is good if we can improve something that we use often… 
o …but here, weʼre sort of making a lot of things worse! 
o (How worse?  Weʼll see next.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Question 4: 
Letʼs look at the impact of the load instructionʼs domination of the CC time a bit more: 
 
Recall, that a load (lw) needs to do the following: 

a) Get Memory(PC) 
b) Read data from the register file and “sign extend” an immediate value 
c) Calculate an address 
d) Get data from Memory(Address) 
e) Write data back to the register file 

 
With this design, letʼs assume that each step takes the amount of time listed in the table 
 

(a) (b) (c) (d) (e) 
4 ns 2 ns 2 ns 4 ns 2 ns 

 
(for simpler math) 
 
Part 1: 
With these numbers, what is the CC time? 
 
A: 14 ns 
 

- However, store (sw) instruction only needs to do steps A, B, C, and D 
o Therefore a store only really needs 12 ns 

- Similarly, add instruction only needs to do steps A, B, C, and E 
o Therefore could do an add in 10 ns 

- Still, with single CC design, both of the above instructions take 14 ns. 
 
Take away: Our CC time is limited by the longest instruction. 
 
Part 2: 
Letʼs quantify performance hit that weʼre taking – and assume that we could somehow execute each 
instruction in the amount of time that it actually takes: 
 
Assume the following: 
 
ALU lw sw Branch / jump 
45 % 20 % 15 % 20 % 

 
Per the previous discussion, we can assume that ALU instructions take 10 ns, lwʼs take 14 ns, and swʼs 
take 12 ns.  We can also estimate how long it takes to do a branch/jump: 

- Assume that steps A, B, C, and E are needed 
o (A) Fetch, (B) Read data to compare, (C) Subtract to do comparison, (D) Update PC (like 

a register write back) 
 
CPU time    =  (instruction / program) x (seconds / instruction) 
CPU time (single CC)   =  i x 14 ns       = 14(i) 
CPU time (variable CC) = i x [(.45 x 10) + (.2 x 14) + (.15 x 12) + (.2 x 10)]  = 11.1(i) 
Potential performance gain =  14(i) / 11.1(i) = 27% 
 
Take away: By using a single, long CC, weʼre losing performance. 



Part 3: 
Unfortunately, such a “variable CC” is not practical to implement…   however, there is a way to get 
some of the above performance back. 
 

- To make this solution work, want to balance the amount of work done per step.  Why? 
o Because if every step has to take the same amount of time, if we have 2, 2, 2, 2, and 4 

ns, weʼre still at 4! 
 
As an example, letʼs see what happens if we can make each step take 3 ns: 
 
CPU time (3 ns, multi-cycle) = (i) x (CC / instruction) x (s / CC) 
     = (i) x [(.45 x 4) + (.2 x 5) + (.15 x 4) + (.15 x 4)] x 3 
     = 11.8(i) 
 
11.8(i) is not as good as 11(i), but its better than 14!   19% vs. 27% 
 
Now, we have a shorter clock rate and each instruction takes an integer number of CCs. 
  
Take away: There is a “catch” to this approach.  We have to store the intermediate results.   
   Remember, a CC is defined as the time some logic was evaluated and the result was  
   latched…. and that inputs often come from another, previous latch. 
 
   Realistically, the latching time of the intermediate registers will add a nominal overhead 
   to each stage. 
 
Part 4: 
Letʼs see how the overhead might affect performance.  Weʼll assume its 0.1 ns. 
 
CPU time (3 ns, overhead) = (i) x (CC / instruction) x (s / CC) 
     = (i) x [(.45 x 4) + (.2 x 5) + (.15 x 4) + (.15 x 4)] x (3+0.1) 
     = (i) x [1.8 + 1 + 0.6 + 0.6] x 3.1 
     = (i) x [4] x 3.1 
     = 12.4(i) 
 
Take away:  

- Again, we lose a little performance, but weʼre still better than the single cycle method 
o 14(i) / 12.4(i) = 13% 

- Every approach is better than the single cycle approach: 
o 11.1(i) < 11.8(i) < 13(i) < 14(i) 

- The 11.8(i) and 13(i) approach are feasible 
 
 
 
 
 
 
 
 
 
 
 



Question 5: 
If we take the above approach, how should we break up the instructions? 
 
Think about each step … what needs to be done to ensure R, I, and J type instructions all work? 

- Hint:  Think about each instruction and think about what can be done in parallel. 
 

(1) IF (2) ID (3) EX (4) M / R-Type (5) WB 
(every) 
Fetch instruction at 
address in PC 

(every) 
Decode instruction 
type (i.e. send opcode 
to control logic) 

(lw/sw) 
Compute memory 
address 

(lw) 
Read memory, store 
result in MDR 
(memory-data-reg) 

(lw) 
Write MDR to register 
file. 

(every) 
Store result in 
instruction register 
(IR) 

(every) 
Store results read 
from the register file 

(R-type) 
Perform correct 
logical operation 

(R-type) 
Write ALUout to 
reference 

 

(every) 
increment PC 

(jump) 
Compute new PC 
address**** 

(Branch) 
Update PC post 
comparison 

(sw) 
Write to memory 

 

  (All) 
Store intermediate 
result in ALU 
(Note) 
All use ALU 

  

 
Letʼs talk about **** more… 

- What if we have an R-type instruction: | opcode | rs | rt | rd | shamt | function code  |     ? 
o Would send rs, and rt encodings to RF as indices 
o Data would be stored in intermediate registers A and B 

- What if we have a J-type instruction:  | opcode | offset    | ?  
o Answer: 

 Do the same as above anyway! 
 Thereʼs no harm and no control signals based on opcode available to end of CC 

anyhow… 
o Similarly, we can calculate a new PC address – i.e. for a jump or branch – even if we 

donʼt know if we have a jump or a branch 
 Again, it does no harm + it subscribes to ASAP philosophy 

• We can do this now, and save a CC later 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Question 6:  Multi-cycle control 
Referring to the extra handouts, modify the multi-cycle datapath shown below to support a new 
instruction:  load++ $x n($y). 
 
The RTL for load ++ is as follows: 
 $x  Mem(n + RF($y)) 
 $y  $y + 4 
 
Show any necessary changes to the FSM as well. 
 
Part A: 
Describe – cycle-by-cycle (starting with Fetch) – what this instruction needs to do: 
 

- Fetch: 
o IR  Mem(PC) 
o PC  PC +4 

- Decode: 
o A  RF(IR[25:21]) 
o B  RF(IR[20:16]) 
o ALUOut  PC + (sign-extend (IR[1:0] << 2) 

- Execute: 
o ALUOut = A + sign-extend(IR[15:0]) 

- Memory: 
o MDR  Mem[ALUOut] 
o Question:  Can we update the $y register here? 

 Yes! 
 The ALU is idle for all intent and purposes 
 Therefore, can also do:  $y  $y + 4 

- Write Back: 
o RF(IR[20:16])  MDR 
o Can we also update $y here?  Actually, thereʼs 2 answers… 

 Answer 1:  Yes… but we need to add more HW… 
• (Namely another path to write data to the register file is needed…) 

 Answer 2:  No… we need to add another state… 
• Look at mux … you can only select the MDR or ALUOut … not both! 
• Begs another question… how do you modify the FSM? 

o My answer … add State 12 coming off of State 4.  This would 
allows us to handle the load++ case.  There would then be a path 
back to fetch 

 
Part B: 
Given your answer to Part A, how would you modify the state machine? 
 
If Answer A, we would need to modify both the state machine and the datapath.  One solution would be: 

- Change “Write Register” on the RF to Write Register 1 – and add Write Register 2 
- Similarly, change “Write Data” on the RF to “Write Data 1” – and add “Write Data 2” 
- Then, duplicate the multiplexors that feed the initial input 
- This will require the addition on 3 control signals – MemToReg(2), RegDst(2), and RegWrite(2)  
- A new state would still need to be added however…  State 11 would branch off of State 3 to 

ensure that 2 registers are written, not just 1. 
 



 
If Answer B, we would need to add another state as specified above…however, no new control signals 
would need to be added. 

- Letʼs assume we would write data into the MDR first… 
- Then in State 12, we would want to write data in ALUOut to the register file.  
- Therefore, we would need to do the following: 

o In State 3, we would need to add the following: 
 ALU control = ADD 
 ALUSrcB = 01 (select #4) 
 ALUSrcA = 1 (select A register) 

o For State 12 (added above) we would need to: 
 Add another control signal.  We need a path from IR[25:21] to the multiplexor that 

selects which register is written.  (note that every other state that asserts this 
control signal would need to be modified) 

 MemToReg = 0 (select ALUOut) 
 RegWrite = 1 (enable register to be written) 

 
Some general comments: 

- These are the kind of tradeoffs that you might consider.  Do you add more HW or do you pay an 
extra CC? 

- Note:  for you final project, you may be asked to modify the Vahid Processor Datapath to support 
the execution of several pseudocode benchmarks.  Extra credit will be given for the fastest, 
simplest, etc. design.  Here, Answer 1 would give better performance while Answer 2 would be 
simpler. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


