
CSE 30321 – Lecture 12 – Datapath Expansion Example

Adding a New Instruction:
Referring to the extra handouts, modify the multi-cycle datapath shown below to support a new
instruction: load++ $x n($y).

The RTL for load ++ is as follows:
 $x Mem(n + RF($y))
 $y $y + 4

Show any necessary changes to the FSM as well.

Part A:
Describe – cycle-by-cycle (starting with Fetch) – what this instruction needs to do:

Item 1: Recap of LW + new functionality.
Remember what the base load does…

- lw <destination register>, offset(<register with value used to calculate address sent to memory>)
- Address sent to memory = offset + data in <register value used to calculated address…>
- Data in destination register = data at address calculated above

Now: ALSO, add 4 to <register with value used to calculate address…>

Item 2: Review RTL, discuss different options for solving problem.

- Fetch:
o IR Mem(PC)
o PC PC +4

- Decode:
o A RF(IR[25:21])
o B RF(IR[20:16])
o ALUOut PC + (sign-extend (IR[15:0] << 2)

 Item 2a: Digression – have assumed BEQ = 3 CCs (see Lecture 09 slide)

 Why is ALUOut line here…
 For BEQ to be done in 3 CCs, need to calculate address in CC #2
 Otherwise, would do comparison and address calculation in CC #3 and would

need antoher ALU
 By doing this in CC #2, we can re-use the ALU … and it does no harm
 Strategy: do something ASAP if HW is available and idle

Item 2b: Back to lw++
- Execute:

o ALUOut = A + sign-extend(IR[15:0])
- Memory:

o MDR Mem[ALUOut]
o
o Question: Can we update the $y register here?

 Yes!
 The ALU is idle for all intent and purposes
 Therefore, can also do: $y $y + 4

Same for every instruction

Same for every instruction

- Write Back:
o RF(IR[20:16]) MDR # Just do normal lw first (i.e. write data back to register)

o Question: Can we also update $y here? Actually, there are 2 answers…

 Option A: Yes… but we need to add more HW…

• (Namely another path to write data to the register file is needed…)
• See datapath on overheard; weʼll draw in Part B.

 Option B: No… we need to add another state…
• Look at mux … you can only select the MDR or ALUOut … not both!
• Begs another question… how do you modify the FSM?

o Add state coming off of State 4. This would allow us to handle the
load++ case. There would then be a path back to fetch

Part B:
Given your answer to Part A, how would you modify the datapath or state diagram?

If Option A, we would need to modify both the state machine and the datapath.

One solution would involve:

Datapath Changes:

- Change “Write Register” on the RF to Write Register 1 – and add Write Register 2
- Similarly, change “Write Data” on the RF to “Write Data 1” – and add “Write Data 2”
- See changes on datapath handout.

o Need to write $y and $x simultaneously, therefore need register address and value.
o Value will come from Instruction[25:21]

 I-Type: opcode, rs, rt, immediate
 For lw: reg[rs] Memory(reg[rt] + immediate)

State Diagram Changes:

- This will require the addition on 1 control signal – RegWrite(2)
o Realistically, would need to add to other states too

 (b/c you donʼt want to write 2 values for other instructions)
- A new state would still need to be added however…

o State 12 would branch off of State 3 to ensure that 2 registers are written, not just 1.
o See changes on FSM handout.

If Option B, we would need to add another state as specified above.

- However, no new control signals would need to be added.

- Letʼs assume we would write data from the MDR first – this is just the previous State 4.
- Then in State 13, we would want to write data in ALUOut to the register file.
- Therefore, we would need to do the following…

o In State 3, we would need to add the following:
 ALU control = ADD
 ALUSrcB = 01 (select #4)
 ALUSrcA = 1 (select A register)

o For State 13 (added above) we would need to:
 Add path from IR[25:21] to multiplexor

• RegDst now becomes a 2 bit control signal
 MemToReg = 0 (select ALUOut)
 RegWrite = 1 (enable register to be written)

o Do this in FSM diagram after we write on board…

Some general comments:

- These are the kind of tradeoffs that you might consider. Do you add more HW or do you pay an
extra CC?

- If we did this with and Add and a LW, how much savings would there be (assuming multi-cycle)?
o 5 + 4 = 9 CCs vs. 6CCs
o 50% faster to replaced 2 instruction sequence with new instruction
o How often could you use it?

Setting Up Pipelining:
If we take the above approach, how should we break up the instructions?

Think about each step … what needs to be done to ensure R, I, and J type instructions all work?

- Hint: Think about each instruction and think about what can be done in parallel.

(1) IF (2) ID (3) EX (4) M / R-Type (5) WB
(every)
Fetch instruction at
address in PC

(every)
Decode instruction
type (i.e. send opcode
to control logic)

(lw/sw)
Compute memory
address

(lw)
Read memory, store
result in MDR
(memory-data-reg)

(lw)
Write MDR to register
file.

(every)
Store result in
instruction register
(IR)

(every)
Store results read
from the register file

(R-type)
Perform correct
logical operation

(R-type)
Write ALUout to
reference

(every)
increment PC

(jump)
Compute new PC
address****

(Branch)
Update PC post
comparison

(sw)
Write to memory

 (All)
Store intermediate
result in ALU
(Note)
All use ALU

Therefore, do memory
reference or register
write…

There is a catch with the pipelining approach:

- Each instruction must go through every stage
- Therefore, each instruction will take 5 CCs, and an ALU instruction will needlessly spend a CC in

the memory stage
- However, if an instruction finishes each CC – so an ALU now takes 1 CC instead of 4 CCs – the

speedup is still 4X!

