Suggested Readings

+ Readings
— H&P: Chapter 4.5-4.7
+ (Over the next 3-4 lectures)

Lecture 14
Pipelining Hazards

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards CSE 30321 — Lecture 14 — Pipelining Hazards)

Data hazards

Processor components

+ Why do they exist???
— Pipelining changes order or read/write accesses to

operands
" — Order differs from order seen by sequentially executing
Describe the fundamental components required in instructions on unpipelined machine
26 how hey intract wil aach ather wit main - Consider this example: All instructions after ADD use
memory, and with external storage media. _ ADD R1 , R2, R3 reSUIt Of ADD
—— : : :
— for 0 e - SUBR4, R1, RS ADD writes the register in WB

— AND R6, R1, R7

} ¥ but SUB needs it in ID.
MULT r1,r2,r3 #r1 € r2*r3 —OR Rg’ R1’ R9

ADD r2,r1,r4 ‘L# 12 € rl4rd

110011 | 000001 | 000010 | 000011 - XOR R1 0’ R1’ R11 ThiS iS a data hazard

001110 | 000010 | 000001 | 000100

University of Notre Dame

University of Notre Dame

lllustrating a data hazard Forwarding

ADD R1, R2, R3 MEE

SUB R4, R1, R5

+ Problem illustrated on previous slide can actually be solved
relatively easily —

+ In this example, result of the ADD instruction not really needed
until after ADD actually produces it

AND R6, R1, R7 - Can we move the result from EX/MEM register to the beginning of

ALU (where SUB needs it)?
— Yes! Hence this slide!

OR R8, R1, R9

+ Generally speaking:

— Forwarding occurs when a result is passed directly to functional unit
Time that requires it.

 — — Result goes from output of one unit to input of another

XOR R10, R1, R11

-1
B

ADD instruction causes a hazard in next 3 instructions
b/c register not written until after those 3 read it.

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 8

CSE 30321 — Lecture 14 — Pipelining Hazards 7

When can we forward? Forwarding: It doesn’t always work

Reg SUB gets info.

DS we
pipe register

oo

SUB R4, R1, Re ﬁ < (7| Reg - Load has a latency that
SUB R4, R1, R5 n forwarding can’t solve.
= AND gets info. Il
AND Ré, R1, R7 |/ from MEM/WB Pipeline must stall until
| i i hazard cleared (starting
t
pipe register AND R, R1, R7 J:H: with instruction that
OR RS, R1, R9 w B wants to use data until
[. source produces it).
OR gets info. by OR R8, R1, R9
XOR R10, R1, R11 M_IEH forwarding from Time
register file -
Time Rule of thumb: If line goes “forward” you can do forwarding. Can’t get data to subtract instruction unless...
- If its drawn backward, it’s physically impossible.

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards

The solution pictorially

N -
[

SUB R4, R1, R5 nﬁm Bubble

AND R6, R1, R7 n Bubble

OR RS, R1, R9 STl

Time

e —

Insertion of bubble causes # of cycles to complete this
sequence to grow by 1

University of Notre Dame

R

7| Reg

=]
<

L™ 1
-~ I
oo

CSE 30321 — Lecture 14 — Pipelining Hazards

Data hazard specifics

+ There are actually 3 different kinds of data hazards!

— Read After Write (RAW)
— Write After Write (WAW)
— Write After Read (WAR)

« We’ll discuss/illustrate each on forthcoming slides.

However, 15t a note on convention.

— Discussion of hazards will use generic instructions i & j.

— i is always issued before j.

— Thus, i will always be further along in pipeline than j.

+ With an in-order issue/in-order completion machine,

we’re not as concerned with WAW, WAR

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 10

HW Change for Forwarding

IDJEX EX/MEM MEM/WE
Zero?
il
i
_t u
RS
ALU |
N D ata
':__' M M em ory 1 he
— L
.—. Lol
e X

University of Notre Dame
CSE 30321 — Lecture 14 — Pipelining Hazards 12

Read after write (RAW) hazards

+ Thus, j would incorrectly receive an old or incorrect
value

+ Graphically/Example:

- | '\ i: ADD R1, R2, R3
7 \—— j: SUBR4,R1,R6
Instruction j is a Instruction i is a
read instruction write instruction
issued after i issued before j

+ Can use stalling or forwarding to resolve this hazard

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 13 CSE 30321 - Lecture 14 — Pipelining Hazards 14

Memory Data Hazards Data hazards and the compiler
+ Seen register hazards, can also have memory hazards + Compiler should be able to help eliminate some stalls
— RAW: caused by data hazards
- store R1, O(SP)
* load R4, 0(SP) - i.e. compiler could not generate a LOAD instruction that
” > 3 2 s 5 is immediately followed by instruction that uses result
of LOAD’s destination register.
Store R1, 0(SP) |F D EX Mm__ |wB
Load R1, 0(SP) F D EX M w8 « Technique is called “pipeline/instruction scheduling”

— In simple pipeline, memory hazards are easy
+ In order, one at a time, read & write in same stage
— In general though, more difficult than register hazards

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 15 CSE 30321 — Lecture 14 — Pipelining Hazards 16
What about control logic? Some example situations
+ For MIPS integer pipeline, all data hazards can be
checked during ID phase of pipeline Situation Example Action
No Dependence ILAVI‘)IIDI:‘;!’E;45F§?2;7 No_ hazard po_ssible_ becau_se no depen_dence
- If data hazard, instruction stalled before its issued SUBRGReR7 | oo o M1 I the immediately following three
OR R9, R6, R7
+ Whether forwarding is needed can also be determined Dependence requiring | LW . 45(2) Comparators detect the use of R1 in the ADD
at this stage, controls signals set stall Sue s, e, 7 DD bogine £ e SUB and OF) before the
+ If hazard detected, control unit of pipeline must stall Dependence overcome | LW R, 1582 Comparators detect the use of R1 in SUB and
pipeline and prevent instructions in IF, ID from by forwarding SUBRB.RLRT | (o'6us 10 bogmwith ex T
advancing OR o, RS, AT
Dependence with %53{54?2(22&7 No action is re_quired because the read of R1
« All control information carried along in pipeline accesses in Order | SUBRBRGRT | ohaoc il the wite o the landod dath.
registers so only these fields must be changed OR o, R, A7 occurred in the first half.

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 17 CSE 30321 - Lecture 14 — Pipelining Hazards 18

+ (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRs) OR
+ (ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRt) OR
+ (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRt))

— OR EX/MEM AND

Detecting Data Hazards Hazard Detection Logic
+ Insert a bubble into pipeline if any are true:
- — ID/EX.RegWrite AND
~\ /_‘,j; i "EB - ((ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRs) OR

S

reg 1

Read Fead

w ’ el e - ((EX/MEM.WriteReg = IF/ID.ReadRegRs) OR
ey e AN _{. we == - (EXMEM.WriteReg = IF/ID.ReadRegRt))
—p| 9% Registers J 7J|7 __".\:’:— Ml:::,y - OR MEM/WB-RegWrite AND
' M oviona)] conrr) | - ((MEM/WB.WriteReg = IF/ID.ReadRegRs) OR
il > W T R - (MEM/WB.WriteReg = IF/ID.ReadRegRt))
L Instf15-11) N x ‘ é)-_77»»‘77-_’
Hazard if a current registertead address = any r\e/giEiefA\;;{{; address in pipeline . .
and is asserted in that pipeline stage Pipeline Notation i
Register ID/EX.RegDst Field
CSE 30321 — Lecture 14 — Pipelining Hazards 19 CSE 30321 — Lecture 14 — Pipelining Hazards 20
RAW: Detect and Stall Hazards vs. Dependencies
+ detect RAW & stall instruction at ID before register read - dependence: fixed property of instruction stream
— mechanics? disable PC, F/D write — (i.e., program)
— RAW detection? compare register names + hazard: property of program and processor
- notation: rs1(D) = src register #1 of inst. in D stage organization
« compare: rs1(D) & rs2(D) w/ rd(D/X), rd(X/M), rd(M/W) — implies potential for executing things in wrong order
- stall (disable PC + F/D, clear D/X) on any match + potential only exists if instructions can be simultaneously
. . . “in-flight”
— RAW detection? register busy-bits in-flight L . .
)) + property of dynamic distance between instructions vs.
« set for rd(D/X) when instruction passes ID pipeline depth
* clear for rd(M/W) + For example, can have RAW dependence with or
- stall if rs1(D) or rs2(D) are “busy” without hazard
— (plus) low cost, simple — depends on pipeline

— (minus) low performance (many stalls)

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 21 CSE 30321 - Lecture 14 — Pipelining Hazards 22

Examples... Branch/Control Hazards

- So far, we’ve limited discussion of hazards to:
— Arithmetic/logic operations
— Data transfers
+ Also need to consider hazards involving branches:
— Example:
- 40: beq $1, $3, $28 # ($28 gives address 72)
« 44: and $12,$2,$5
- 48: or $13, $6, $2
- 52: add $14, $2, $2
- 72: lw $4, 50($7)
+ How long will it take before the branch decision takes
effect?

— What happens in the meantime?

Examples 1-3

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards CSE 30321 — Lecture 14 — Pipelining Hazards 24

Branch signal determined in MEM stage

Pipeline impact on branch

PCSre clock cycle: CC1 cC2 CcC3 CC4 CCs5 cCeé cc7 ccs cCo

TOEX
ﬂ EX/MEM 40 beq $1, $3, 28
Controld ALUO; e I_:Tiwa
]
WB|

1 ALUSrc

{E 44 and $12, $2, $5
3 : | §
g 2
E‘ shift) | | Add
left2 48 or $13, $6, $2

%
=]
Read Read §'

zls

[5]

MemRead
MemWrite
MemloReg

—
- data 1 | Read
9 addr 52 add $14, $2, $2
Read
Write Read L
Instruction L reg data 2 —p Write data
Memory addr
Write
—p| %12 Registers Wite oo 72 1w $4, 50($7)
data Memory

Inst[15-0] @_'
extend
Inst[20-16]
Inst{15-11] .) ;
L L L _—‘ — They will complete unless we do something about it
How do we deal with this?
— We’ll consider 2 possibilities

University of Notre Dame

If branch condition true, must skip 44, 48, 52
— But, these have already started down the pipeline

xcz

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 25
Dealing w/branch hazards: always stall

+ Branch taken
— Wait 3 cycles
— No proper instructions in the pipeline
— Same delay as without stalls (no time lost)

clock cycle: CC1 CC2 cC3 cc4

40 beq §1, $3, $28

stall

stall
stall

72 1w $4, 50(§7)

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 27

Dealing w/branch hazards: assume branch not taken

+ On average, branches are taken 2 the time
— If branch not taken...
+ Continue normal processing
— Else, if branch is taken...
* Need to flush improper instruction from pipeline

+ Cuts overall time for branch processing in 2

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 26

Dealing w/branch hazards: always stall

+ Branch not taken
— Still must wait 3 cycles
— Time lost
— Could have spent cycles fetching and decoding next instructions

clock cycle: CC1 CC2 CC3 cc4

stall
stall
stall
44 and $12, $2, $5
48 or $13, $6, $2

52 add $14, $2, $2

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 28

Flushing unwanted instructions from pipeline

+ Useful to compare w/stalling pipeline:

— Simple stall: inject bubble into pipe at ID stage only
+ Change control to 0 in the ID stage
* Let “bubbles” percolate to the right
— Flushing pipe: must change inst. In IF, ID, and EX
- IF Stage:
— Zero instruction field of IF/ID pipeline register
— Use new control signal IF.Flush
- ID Stage:
— Use existing “bubble injection” mux that zeros control for stalls
- Sigtnal ID.Flush is ORed w/stall signal from hazard detection
uni
- EX Stage:
— Add new muxes to zero EX pipeline register control lines
— Both muxes controlled by single EX.Flush signal
+ Control determines when to flush:

— Depends on Opcode and value of branch condition

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 29 CSE 30321 - Lecture 14 — Pipelining Hazards 30

Assume “branch not taken”...and branch is Assume “branch not taken”...and branch is

not taken... taken...
+ Execution proceeds normally — no penalty + Bubbles injected into 3 stages during cycle 5
clock cycle: CC1 cc2 cc3 cca CC5 CCé6 cc7 ccs CcCo clock cycle: CC1 CC2 CC3 CC4 CC5 CcCé6 CC7 cCs CC9

40 beq $1, $3, 28| | 40 beq $1, $3, 28| I8

44 and $12, $2, $5 44 and $12, $2, $5

6 60 65 6

48 or $13, $6, $2 48 or $13, $6, $2

52 add $14, $2, $2 52 add $14, $2, $2

72 1w $4, 50($7) g b

-Regl)

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 31 CSE 30321 — Lecture 14 — Pipelining Hazards 32
Branch Penalty Impact Branch Penalty Impact
+ Assume 16% of all instructions are branches + Some solutions:
— 4% unconditional branches: 3 cycle penalty — In ISA: branches always execute next 1 or 2 instructions
— 12% conditional: 50% taken + Instruction so executed said to be in delay slot

- See SPARC ISA

+ For a sequence of N instructions (assume N is large)
+ (example — loop counter update)

* N cycles to initiate each
- 3*0.04* N delays due to unconditional branches — In organization: move comparator to ID stage and

+ 0.5*3*0.12 * N delays due to conditional taken decide in the ID stage

- Also, an extra 4 cycles for pipeline to empty * Reduces branch delay by 2 cycles
. Total: * Increases the cycle time

— 1.3*N + 4 total cycles (or 1.3 cycles/instruction) (CPI)
+ 30% Performance Hit!!! (Bad thing)

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 33 CSE 30321 - Lecture 14 — Pipelining Hazards 34

Branch Prediction A Branch Predictor
+ Prior solutions are “ugly”
- Better (& more common): guess in IF stage Normal PC value
— Technique is called “branch predicting”’; needs 2 parts: I_ Instruction

+ “Predictor” to guess where/if instruction will branch (and to Memory

where)
+ “Recovery Mechanism”: i.e. a way to fix your mistake

.@ .

— Prior strategy: \
+ Predictor: always guess branch never taken Emss Brancl(Branch Branch
* Recovery: flush instructions if branch taken Prediction Update

— Alternative: accumulate info. in IF stage as to... Logic Information

+ Whether or not for any particular PC value a branch was
taken next

+ To where it is taken
* How to update with information from later stages

Guess as to where \
to branch

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 35 CSE 30321 — Lecture 14 — Pipelining Hazards 36

Computing Performance Examples...

+ Program assumptions:
— 23% loads and in 'z of cases, next instruction uses load value
— 13% stores
19% conditional branches
— 2% unconditional branches
— 43% other
+ Machine Assumptions:
— 5 stage pipe with all forwarding

« Only penalty is 1 cycle on use of load value immediately after a
load)

+ Jumps are totally resolved in ID stage for a 1 cycle branch penalty
- 75% branch prediction accuracy Ty
+ 1 cycle delay on misprediction

Examples 6-9

University of Notre Dame

”Exémple 5

University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 37 CSE 30321 - Lecture 14 — Pipelining Hazards 38

40,,,: sub $11, $2, $4
a4 - and $12, $2, $5 clock cycle: cC1 CC2 €C3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 cC12
hex ’ 4 e -
48,,: or $13,$6, 52 30 sub 511, 52, 54 '
4b, .. add $1, $2, $1 (overflow in EX stage)
. 44 and $12, $2, $5

50p,c,: sit $15, $6, $7 (already in ID stage)
54,,,: Iw $16,50(37) (already in IF stage) 48 or $13, 86, §2 , addis I EX stage
40000040,..,: sw $25, 1000($0) exception handler 4b add 51, §2, 51
40000044hex: sw $265 1004($0) 50 slt $15, $6, §7
Need to transfer control to exception handler ASAP 48 1w $16, 50($7)

— Don’t want invalid data to contaminate registers or memory

— Need to flush instructions already in the pipeline 40000040 sw $25, 1000(0)

— Start fetching instructions from 40000040, + Cycle 6:

— Save addr. following offending instruction (50,,,) in TrapPC (EPC)

— Exception detected, flush signals generated, bubbles injected
— Don’t clobber $1 — use for debugging

Cycle 7
— 3 bubbles appear in ID, EX, MEM stages
— PC gets 40000040,,, TrapPC gets 50},

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 39 CSE 30321 — Lecture 14 — Pipelining Hazards 40
Managing exception hazards gets much worse! Discussion
- Different exception types may occur in different stages: + How does instruction set design impact pipelining?
Exception Cause Where it occurs
Undefined instruction ID
Invoking OS EX
I/O device request Flexible
Hardware malfunction Anywhere/flexible + Does increasing the depth of pipelining always

increase performance?
+ Challenge is to associate exception with proper
instruction: difficult!

— Relax this requirement in non-critical cases: imprecise
exceptions
+ Most machines use precise instructions

— Further challenge: exceptions can happen at same time

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 14 — Pipelining Hazards 41 CSE 30321 - Lecture 14 — Pipelining Hazards 42

Comparative Performance Summary

* Performance:

b

- 4 pipelined . .
% multicycle pipelined E single-cycle - ExeCUtlon tlme *Or* thI‘OUghpUt
- o ,
® o & —Amdahl’s law
g s 9 . . i - .
3 H « Multi-bus/multi-unit circuits
° ’g single-cycle £ 3 multicycle —one long clock cycle or N shorter cycles
k . 5 . « Pipelining
slower faster 1 several = .
instruction throughput instruction latency - overlap Independent tasks

+ Throughput: instructions per clock cycle = 1/cpi Pipelining in _pr_ocessors N
— Pipeline has fast throughput and fast clock rate —“hazards” limit opportunities for overlap
+ Latency: inherent execution time, in cycles

— High latency for pipelining causes problems
» Increased time to resolve hazards

University of Notre Dame

University of Notre Dame

