
University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 1!

Lecture 14 "
 Pipelining Hazards!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards!

Suggested Readings!
•! Readings!

–! H&P: Chapter 4.5-4.7!

•! (Over the next 3-4 lectures)!

2!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the
right application!

Writing more !
efficient code!

Multicore processors
and programming!

CSE 30321!

Goal:"

Describe the fundamental components required in

a single core of a modern microprocessor as well
as how they interact with each other, with main

memory, and with external storage media."

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 4!

Data hazards!
•! These exist because of pipelining!

•! Why do they exist???!

–! Pipelining changes order or read/write accesses to
operands!

–! Order differs from order seen by sequentially executing
instructions on unpipelined machine!

•! Consider this example:!

–! ADD R1, R2, R3!

–! SUB R4, R1, R5!

–! AND R6, R1, R7!

–! OR R8, R1, R9!

–! XOR R10, R1, R11!

All instructions after ADD use

result of ADD "

ADD writes the register in WB

but SUB needs it in ID."

This is a data hazard!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 5!

Illustrating a data hazard!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM!

Reg!Mem!

Time!

ADD R1, R2, R3!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9!

XOR R10, R1, R11!

A
L

U
!

Reg!Mem!

ADD instruction causes a hazard in next 3 instructions !
b/c register not written until after those 3 read it.!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 6!

Forwarding!

•! Problem illustrated on previous slide can actually be solved
relatively easily – with forwarding!

•! In this example, result of the ADD instruction not really needed
until after ADD actually produces it!

•! Can we move the result from EX/MEM register to the beginning of
ALU (where SUB needs it)?!

–! Yes! Hence this slide!!

•! Generally speaking:!

–! Forwarding occurs when a result is passed directly to functional unit
that requires it.!

–! Result goes from output of one unit to input of another!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 7!

When can we forward?!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM!

Reg!Mem!

Time!

ADD R1, R2, R3!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9!

XOR R10, R1, R11!

A
L

U
!

Reg!Mem!

SUB gets info. !
from EX/MEM !
pipe register!

AND gets info. !
from MEM/WB !
pipe register!

OR gets info. by !
forwarding from!
register file!

Rule of thumb: !If line goes “forward” you can do forwarding. !
! ! !If its drawn backward, it#s physically impossible.!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 8!

Forwarding: It doesn#t always work!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM!

A
L

U
!

Reg!IM!

Time!

LW R1, 0(R2)!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9! Reg!IM!

Can#t get data to subtract instruction unless...!

Load has a latency that!
forwarding can#t solve.!

Pipeline must stall until !
hazard cleared (starting !
with instruction that !
wants to use data until !
source produces it).!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 9!

The solution pictorially!

A
L

U
!

Reg!IM! DM! Reg!

Reg!IM!

IM!

Time!

LW R1, 0(R2)!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9!

Bubble"

Bubble"

Bubble"

A
L

U
!

Reg!

Reg!IM!

A
L

U
!

DM!

Insertion of bubble causes # of cycles to complete this !
sequence to grow by 1!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 10!

HW Change for Forwarding!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 11!

Data hazard specifics!
•! There are actually 3 different kinds of data hazards!!

–! Read After Write (RAW)!

–! Write After Write (WAW)!

–! Write After Read (WAR)!

•! We#ll discuss/illustrate each on forthcoming slides.
However, 1st a note on convention.!

–! Discussion of hazards will use generic instructions i & j.!

–! i is always issued before j. !

–! Thus, i will always be further along in pipeline than j.!

•! With an in-order issue/in-order completion machine,
we#re not as concerned with WAW, WAR!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 12!

Read after write (RAW) hazards!
•! With RAW hazard, instruction j tries to read a source

operand before instruction i writes it.!

•! Thus, j would incorrectly receive an old or incorrect
value!

•! Graphically/Example:!

•! Can use stalling or forwarding to resolve this hazard!

… j! i! …

Instruction j is a!
read instruction!

issued after i!

Instruction i is a!
write instruction!
issued before j!

i: ADD R1, R2, R3"
j: SUB R4, R1, R6"

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 13!

Memory Data Hazards!
•! Seen register hazards, can also have memory hazards!

–! RAW: !

•! store R1, 0(SP) !

•! load R4, 0(SP) !

–! In simple pipeline, memory hazards are easy!

•! In order, one at a time, read & write in same stage!

–! In general though, more difficult than register hazards!

1! 2! 3! 4! 5! 6!

Store R1, 0(SP)! F! D! EX! M! WB!

Load R1, 0(SP)! F! D! EX! M! WB!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 14!

Data hazards and the compiler!
•! Compiler should be able to help eliminate some stalls

caused by data hazards!

•! i.e. compiler could not generate a LOAD instruction that
is immediately followed by instruction that uses result
of LOAD#s destination register.!

•! Technique is called “pipeline/instruction scheduling”!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 15!

What about control logic?!
•! For MIPS integer pipeline, all data hazards can be

checked during ID phase of pipeline!

•! If data hazard, instruction stalled before its issued!

•! Whether forwarding is needed can also be determined
at this stage, controls signals set!

•! If hazard detected, control unit of pipeline must stall
pipeline and prevent instructions in IF, ID from
advancing!

•! All control information carried along in pipeline
registers so only these fields must be changed!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 16!

Some example situations!

Situation! Example! Action!

No Dependence! LW R1, 45(R2)!
ADD R5, R6, R7!
SUB R8, R6, R7!
OR R9, R6, R7!

No hazard possible because no dependence
exists on R1 in the immediately following three
instructions.!

Dependence requiring
stall!

LW R1, 45(R2)!
ADD R5, R1, R7!
SUB R8, R6, R7!
OR R9, R6, R7!

Comparators detect the use of R1 in the ADD
and stall the ADD (and SUB and OR) before the
ADD begins EX!

Dependence overcome
by forwarding!

LW R1, 45(R2)!
ADD R5, R6, R7!
SUB R8, R1, R7!
OR R9, R6, R7!

Comparators detect the use of R1 in SUB and
forward the result of LOAD to the ALU in time
for SUB to begin with EX!

Dependence with
accesses in order!

LW R1, 45(R2)!
ADD R5, R6, R7!
SUB R8, R6, R7!
OR R9, R1, R7!

No action is required because the read of R1
by OR occurs in the second half of the ID
phase, while the write of the loaded data
occurred in the first half.!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 17!

Detecting Data Hazards!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 18!

Hazard Detection Logic!
•! Insert a bubble into pipeline if any are true:!

–! ID/EX.RegWrite AND!
•! ((ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRs) OR!

•! (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRs) OR!

•! (ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRt) OR!

•! (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRt))!

–! OR EX/MEM AND!
•! ((EX/MEM.WriteReg = IF/ID.ReadRegRs) OR!

•! (EX/MEM.WriteReg = IF/ID.ReadRegRt))!

–! OR MEM/WB.RegWrite AND!
•! ((MEM/WB.WriteReg = IF/ID.ReadRegRs) OR!

•! (MEM/WB.WriteReg = IF/ID.ReadRegRt))!

Notation!
ID/EX.RegDst!

Pipeline!
Register! Field!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 19!

RAW: Detect and Stall!
•! detect RAW & stall instruction at ID before register read !

–! mechanics? disable PC, F/D write !

–! RAW detection? compare register names !

•! notation: rs1(D) = src register #1 of inst. in D stage !

•! compare: rs1(D) & rs2(D) w/ rd(D/X), rd(X/M), rd(M/W) !

•! stall (disable PC + F/D, clear D/X) on any match !

–! RAW detection? register busy-bits !

•! set for rd(D/X) when instruction passes ID !

•! clear for rd(M/W) !

•! stall if rs1(D) or rs2(D) are “busy” !

–! (plus) low cost, simple !

–! (minus) low performance (many stalls)!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 20!

Hazards vs. Dependencies!
•! dependence: fixed property of instruction stream !

–! (i.e., program) !

•! hazard: property of program and processor
organization !

–! implies potential for executing things in wrong order !

•! potential only exists if instructions can be simultaneously
“in-flight” !

•! property of dynamic distance between instructions vs.
pipeline depth !

•! For example, can have RAW dependence with or
without hazard !

–! depends on pipeline !

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 21!

Examples…!

Examples 1-3!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 22!

Branch/Control Hazards!
•! So far, we#ve limited discussion of hazards to:!

–! Arithmetic/logic operations!

–! Data transfers!

•! Also need to consider hazards involving branches:!

–! Example:!
•! 40: !beq !$1, $3, $28 # ($28 gives address 72)!

•! 44: !and !$12, $2, $5!

•! 48: !or !$13, $6, $2!

•! 52: !add !$14, $2, $2!

•! 72: !lw !$4, 50($7)!

•! How long will it take before the branch decision takes
effect?!

–! What happens in the meantime?!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 23!

Branch signal determined in MEM stage!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 24!

Pipeline impact on branch!

•! If branch condition true, must skip 44, 48, 52!

–! But, these have already started down the pipeline!

–! They will complete unless we do something about it!

•! How do we deal with this?!

–! We#ll consider 2 possibilities!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 25!

Dealing w/branch hazards: always stall!

•! Branch taken!

–! Wait 3 cycles!

–! No proper instructions in the pipeline!

–! Same delay as without stalls (no time lost)!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 26!

Dealing w/branch hazards: always stall!
•! Branch not taken!

–! Still must wait 3 cycles!

–! Time lost!

–! Could have spent cycles fetching and decoding next instructions!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 27!

Dealing w/branch hazards: assume branch not taken!

•! On average, branches are taken $ the time!

–! If branch not taken…!

•! Continue normal processing!

–! Else, if branch is taken…!

•! Need to flush improper instruction from pipeline!

•! Cuts overall time for branch processing in $!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 28!

Flushing unwanted instructions from pipeline!
•! Useful to compare w/stalling pipeline:!

–! Simple stall: inject bubble into pipe at ID stage only!
•! Change control to 0 in the ID stage!
•! Let “bubbles” percolate to the right!

–! Flushing pipe: must change inst. In IF, ID, and EX!
•! IF Stage:!

–! Zero instruction field of IF/ID pipeline register!
–! Use new control signal IF.Flush!

•! ID Stage:!
–! Use existing “bubble injection” mux that zeros control for stalls!
–! Signal ID.Flush is ORed w/stall signal from hazard detection

unit!

•! EX Stage:!
–! Add new muxes to zero EX pipeline register control lines!
–! Both muxes controlled by single EX.Flush signal!

•! Control determines when to flush:!
–! Depends on Opcode and value of branch condition!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 29!

Assume “branch not taken”…and branch is
not taken…!

•! Execution proceeds normally – no penalty!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 30!

Assume “branch not taken”…and branch is
taken…!

•! Bubbles injected into 3 stages during cycle 5!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 31!

Branch Penalty Impact!
•! Assume 16% of all instructions are branches!

–! 4% unconditional branches: 3 cycle penalty!

–! 12% conditional: 50% taken!

•! For a sequence of N instructions (assume N is large)!
•! N cycles to initiate each!

•! 3 * 0.04 * N delays due to unconditional branches!

•! 0.5 * 3 * 0.12 * N delays due to conditional taken!

•! Also, an extra 4 cycles for pipeline to empty!

•! Total:!

–! 1.3*N + 4 total cycles (or 1.3 cycles/instruction) (CPI)!

•! 30% Performance Hit!!! (Bad thing)!

Example 4!
University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 32!

Branch Penalty Impact!
•! Some solutions:!

–! In ISA: branches always execute next 1 or 2 instructions!

•! Instruction so executed said to be in delay slot!

•! See SPARC ISA!

•! (example – loop counter update)!

–! In organization: move comparator to ID stage and
decide in the ID stage!

•! Reduces branch delay by 2 cycles!

•! Increases the cycle time!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 33!

Branch Prediction!
•! Prior solutions are “ugly”!

•! Better (& more common): guess in IF stage!

–! Technique is called “branch predicting”; needs 2 parts:!
•! “Predictor” to guess where/if instruction will branch (and to

where)!

•! “Recovery Mechanism”: i.e. a way to fix your mistake!

–! Prior strategy:!
•! Predictor: always guess branch never taken!

•! Recovery: flush instructions if branch taken!

–! Alternative: accumulate info. in IF stage as to…!

•! Whether or not for any particular PC value a branch was
taken next!

•! To where it is taken!

•! How to update with information from later stages!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 34!

A Branch Predictor!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 35!

Computing Performance!
•! Program assumptions:!

–! 23% loads and in $ of cases, next instruction uses load value!

–! 13% stores!

–! 19% conditional branches!

–! 2% unconditional branches!

–! 43% other!

•! Machine Assumptions:!

–! 5 stage pipe with all forwarding!

•! Only penalty is 1 cycle on use of load value immediately after a
load)!

•! Jumps are totally resolved in ID stage for a 1 cycle branch penalty!

•! 75% branch prediction accuracy!

•! 1 cycle delay on misprediction!

Example 5!
University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 36!

Examples…!

Examples 6-9!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 37!

Exception Hazards!
•! 40hex: ! !sub !$11, $2, $4!

•! 44hex: ! !and !$12, $2, $5!

•! 48hex: ! !or !$13, $6, $2!

•! 4bhex: ! !add !$1, $2, $1 !(overflow in EX stage)!

•! 50hex: ! !slt !$15, $6, $7 !(already in ID stage)!

•! 54hex: ! !lw !$16, 50($7) !(already in IF stage)!

•! …!

•! 40000040hex:! !sw !$25, 1000($0) !exception handler!

•! 40000044hex:! !sw !$26, 1004($0)!

•! Need to transfer control to exception handler ASAP!

–! Don#t want invalid data to contaminate registers or memory!

–! Need to flush instructions already in the pipeline!

–! Start fetching instructions from 40000040hex!

–! Save addr. following offending instruction (50hex) in TrapPC (EPC)!

–! Don#t clobber $1 – use for debugging!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 38!

Flushing pipeline after exception!

•! Cycle 6:!

–! Exception detected, flush signals generated, bubbles injected!

•! Cycle 7!

–! 3 bubbles appear in ID, EX, MEM stages!

–! PC gets 40000040hex, TrapPC gets 50hex!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 39!

Managing exception hazards gets much worse!!

•! Different exception types may occur in different stages:!

•! Challenge is to associate exception with proper
instruction: difficult!!

–! Relax this requirement in non-critical cases: imprecise
exceptions!

•! Most machines use precise instructions!

–! Further challenge: exceptions can happen at same time!

Exception Cause! Where it occurs!

Undefined instruction! ID!

Invoking OS! EX!

I/O device request! Flexible!

Hardware malfunction! Anywhere/flexible!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 40!

Discussion!
•! How does instruction set design impact pipelining?!

•! Does increasing the depth of pipelining always
increase performance?!

University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 41!

Comparative Performance!

•! Throughput: instructions per clock cycle = 1/cpi!

–! Pipeline has fast throughput and fast clock rate!

•! Latency: inherent execution time, in cycles!

–! High latency for pipelining causes problems!
•! Increased time to resolve hazards!

Board! University of Notre Dame!

CSE 30321 – Lecture 14 – Pipelining Hazards! 42!

Summary!
•! Performance:!

–!Execution time *or* throughput!

–!Amdahl#s law!

•! Multi-bus/multi-unit circuits!

–!one long clock cycle or N shorter cycles!

•! Pipelining!

–!overlap independent tasks!

•! Pipelining in processors!

–!“hazards” limit opportunities for overlap!

