

CSE 30321 – Lecture 17 – In Class Handout
Example 5:
Assume the following:

- 25% of instructions are loads 50% of the time, the next instruction uses the loaded value
- 13% of instructions are stores
- 19% of instructions are conditional branches
- 2% of instructions are unconditional branches
- 43% of instructions are something else

Also…

- You have a 5 stage pipeline with forwarding
- There is a 1 CC penalty if an instruction immediately needs a loaded value
- We have added extra hardware to resolve a jump/branch instruction in the decode stage

o Therefore, there is just a 1 CC penalty
- 75% of conditional branches are predicted correctly

What is the CPI of our pipeline?

- 0.23 x 0.5 x 1 = 0.115
o 23% of the time we have a lw and 50% of those times, we need the result right away

- 0.02 x 1 = 0.02
o 2% of the time we have a jump and have a 1 CC penalty

- 0.25 x 0.19 x 1 = 0.0475
o 25% of the time we guess wrong on our branch and have a 1 CC penalty

Therefore 0.115 + 0.02 + 0.0475 = 0.1825, If our ideal CPI is 1, then our new CPI is 1.1825

Example 6:

- Assume that forwarding HAS been implemented
- We will stall if we encounter a branch instruction
- Branches or Jumps are resolved after the EX stage.
- Assume that register $2 has the value of 0 and $3 has the value of 0

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LW
$1, 4($9) IF ID EX M W

Add
$4, $1, $9 IF ID ID EX M W Add gets data from lw

forwarding

Sub
$7, $4, $9 IF IF ID EX M WB Sub gets data from

add forwarding

BEQ
$2, $3, X IF ID EX BEQ must still wait to

enter the pipeline

Add
$9, $8, $7

And
$4, $5, $5

X: Add
$4, $5, $9 IF ID EX M WB

Canʼt start Add until
after BEQ finishes

executing (comparing)

Example 7:

- Assume that forwarding HAS been implemented
- We will predict that any branch instruction is NOT TAKEN
- Branches or Jumps are resolved after the EX stage.
- Assume that register $2 has the value of 0 and $3 has the value of 0

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LW
$1, 4($9) IF ID EX M W

Add
$4, $1, $9 IF ID ID EX M W

Sub
$7, $4, $9 IF IF ID EX M WB

BEQ
$2, $3, X IF ID EX

Add
$9, $8, $7 IF ID

And
$4, $5, $5 IF

Add and And start down pipeline;
however, they would not change
state until CC 10 and 11. They
never get this far so there is no

harm done. We can kill them and
restart the next add instruction.

X: Add
$4, $5, $9 IF ID EX M W

 Example 8:

- Assume that forwarding HAS been implemented
- We will predict that any branch instruction is TAKEN
- Branches or jumps are resolved after the EX stage.
- Assume that register $2 has the value of 0 and $3 has the value of 0

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LW
$1, 4($9) IF ID EX M W

Add
$4, $1, $9 IF ID ID EX M W

Sub
$7, $4, $9 IF IF ID EX M WB

BEQ
$2, $3, X IF ID EX

Add
$9, $8, $7

And
$4, $5, $5

X: Add
$4, $5, $9 IF ID EX M W

This is the best situation – the last add instruction finishes 2 CCʼs earlier.

Example 9:
For the sequence of instructions shown below, show how they would progress through the pipeline.

Part 1:

- Assume that forwarding HAS been implemented
- We will predict that any branch instruction is NOT TAKEN
- Branches or Jumps are resolved after the EX stage.
- Assume that register $8 does not equal $1 for the 1st Beq instruction
- Assume that register $17 does equal $26 for the 2nd Beq instruction

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

SUB
$1, $2, $3

F D E M W

Add
$8, $9, $10

 F D E M W

Beq
$1, $8, X

 F D E M W Technically, nothing done, but can think of
instruction as progressing through pipeline

Lw
$7, 0($20)

 F D E M W

Add
$11, $7, $12

 F D D E M W

Sw
$11, 0($24)

 F F D E M W

X: Addi
$17, $17, 1

 F D E M W

Beq
$17, $26, Y

 F D E M W

Sub
$5, $6, $7

 F D

Or
$8, $5, $5

 F

Y: Addi
$17, $17, 1

 F D E M W

Sw
$17, 0($10)

 F D E M W

SUB
$1, $2, $3

 F D E …

Add
$8, $9, $10

 F D …

Part 2:

- (i) Assume that this sequence of code is executed 100 times. How many cycles does the pipelined implementation take?
- (ii) How many cycles would this code take in a multi-cycle implementation?

- From Part 1, you can see that it takes 17 clock cycles to execute 12 instructions.
- However, we can start the next “iteration” in clock cycle 14. Therefore, it really only takes 13 cycles for each iteration and 17

CCs for the last one.
- Therefore, iterations 1 through 99 take 13 CCs each

o (13 x 99 = 1287 CCs)
- Iteration 100 takes 17 CCs
- Therefore 1287 CCs + 17 CCs = 1304 CCs

- For the multi-cycle implementation, we have:
o 9 instructions that take 4 CCs
o 2 instructions that take 3 CCs
o 1 instruction that takes 5 CCs

- Therefore, each “iteration” takes: (9x4) + (2x3) + (1x5) = 36 + 6 + 5 = 47 CCs
- If there are 100 iterations, then 4700 CCs are required

Pipelining gives us a speed up of 4700 / 1304 = 3.6 for this implemention

- Little to no extra HW is needed!

