
University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 1!

Lecture 17 "
Short Pipelining Review!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards!

Suggested Readings!
•! Readings!

–! H&P: Chapter 4.5-4.7!

•! (Over the next 3-4 lectures)!

2!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the
right application!

Writing more !
efficient code!

Multicore processors
and programming!

CSE 30321!

Goal:"

Describe the fundamental components required in

a single core of a modern microprocessor as well
as how they interact with each other, with main

memory, and with external storage media."

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 4!

Recap: Pipelining improves throughput!

Inst. #! 1! 2! 3! 4! 5! 6! 7! 8!

Inst. i! IF! ID! EX! MEM! WB!

Inst. i+1! IF! ID! EX! MEM! WB!

Inst. i+2! IF! ID! EX! MEM! WB!

Inst. i+3! IF! ID! EX! MEM! WB!

Clock Number!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM! Reg!

P
ro

g
ra

m
 e

x
e
c
u

ti
o

n
 o

rd
e
r

(i
n

 i
n

s
tr

u
c
ti

o
n

s
)!

Time!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 5!

Recap: pipeline math!
•! If times for all S stages are equal to T:!

–! Time for one initiation to complete still ST!

–! Time between 2 initiates = T not ST!

–! Initiations per second = 1/T!

•! Pipelining: Overlap multiple executions of same
sequence!

–! Improves THROUGHPUT, not the time to perform a
single operation!

Time for N initiations to complete: !NT + (S-1)T!

Throughput: ! ! ! !Time per initiation = T + (S-1)T/N ! T!!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 6!

Recap: Stalls and performance!
•! Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle!

•! Pipelining can be viewed to:!

–! Decrease CPI or clock cycle time for instruction!

–! Let#s see what affect stalls have on CPI…!

•! CPI pipelined =!

–! Ideal CPI + Pipeline stall cycles per instruction!

–! 1 + Pipeline stall cycles per instruction!

•! Ignoring overhead and assuming stages are balanced:!

•! If no stalls, speedup equal to # of pipeline stages in
ideal case!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 7!

Recap: Structural hazards!
•! 1 way to avoid structural hazards is to duplicate

resources!

–! i.e.: An ALU to perform an arithmetic operation and an
adder to increment PC!

•! If not all possible combinations of instructions can be
executed, structural hazards occur!

•! Most common instances of structural hazards:!

–! When a functional unit not fully pipelined!

–! When some resource not duplicated enough!

•! Pipelines stall result of hazards, CPI increased from the
usual “1”!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 8!

Recap: Structural hazard example!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

Time!

A
L

U
!

Reg!Mem! DM! Reg!

Load!

Instruction 1!

Instruction 2!

Instruction 3!

Instruction 4!

What#s the problem here?"

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 9!

Recap: Data hazards!
•! These exist because of pipelining!

•! Why do they exist???!

–! Pipelining changes order or read/write accesses to
operands!

–! Order differs from order seen by sequentially executing
instructions on un-pipelined machine!

•! Consider this example:!

–! ADD R1, R2, R3!

–! SUB R4, R1, R5!

–! AND R6, R1, R7!

–! OR R8, R1, R9!

–! XOR R10, R1, R11!

All instructions after ADD use

result of ADD "

ADD writes the register in WB

but SUB needs it in ID."

This is a data hazard!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 10!

Recap: Forwarding & data hazards!

•! Problem illustrated on previous slide can actually be solved
relatively easily – with forwarding!

•! In this example, result of the ADD instruction not really needed
until after ADD actually produces it!

•! Can we move the result from EX/MEM register to the beginning of
ALU (where SUB needs it)?!

–! Yes! Hence this slide!!

•! Generally speaking:!

–! Forwarding occurs when a result is passed directly to functional unit
that requires it.!

–! Result goes from output of one unit to input of another!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 11!

Recap: Forwarding doesn#t always work!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM!

A
L

U
!

Reg!IM!

Time!

LW R1, 0(R2)!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9! Reg!IM!

Can#t get data to subtract b/c result needed at beginning of!
CC #4, but not produced until end of CC #4.!

Load has a latency that!
forwarding can#t solve.!

Pipeline must stall until !
hazard cleared (starting !
with instruction that !
wants to use data until !
source produces it).!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 12!

Recap: HW change for forwarding!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 13!

Recap: Hazards vs. dependencies!
•! dependence: fixed property of instruction stream !

–! (i.e., program) !

•! hazard: property of program and processor
organization !

–! implies potential for executing things in wrong order !

•! potential only exists if instructions can be simultaneously
“in-flight” !

•! property of dynamic distance between instructions vs.
pipeline depth !

•! For example, can have RAW dependence with or
without hazard !

–! depends on pipeline !

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 14!

Recap: Branch/Control Hazards!
•! So far, we#ve limited discussion of hazards to:!

–! Arithmetic/logic operations!

–! Data transfers!

•! Also need to consider hazards involving branches:!

–! Example:!
•! 40: !beq !$1, $3, $28 # ($28 gives address 72)!

•! 44: !and !$12, $2, $5!

•! 48: !or !$13, $6, $2!

•! 52: !add !$14, $2, $2!

•! 72: !lw !$4, 50($7)!

•! How long will it take before the branch decision takes
effect?!

–! What happens in the meantime?!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 15!

Recap: How branches impact a pipeline!

•! If branch condition true, must skip 44, 48, 52!

–! But, these have already started down the pipeline!

–! They will complete unless we do something about it!

•! How do we deal with this?!

–! We#ll consider 2 possibilities!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 16!

•! On average, branches are taken $ the time!

–! If branch not taken…!

•! Continue normal processing!

–! Else, if branch is taken…!

•! Need to flush improper instruction from pipeline!

•! Cuts overall time for branch processing in $!

Recap: Or assume branch is not taken!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 17!

Recap: Branch penalty impact!
•! Assume 16% of all instructions are branches!

–! 4% unconditional branches: 3 cycle penalty!

–! 12% conditional: 50% taken!

•! For a sequence of N instructions (assume N is large)!
•! N cycles to initiate each!

•! 3 * 0.04 * N delays due to unconditional branches!

•! 0.5 * 3 * 0.12 * N delays due to conditional taken!

•! Also, an extra 4 cycles for pipeline to empty!

•! Total:!

–! 1.3*N + 4 total cycles (or 1.3 cycles/instruction) (CPI)!

•! 30% Performance Hit!!! (Bad thing)!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 18!

Lecture 17"
Wrap-up Discussion of Hazards!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 19!

Branch Penalty Impact!
•! Some solutions:!

–! In ISA: branches always execute next 1 or 2 instructions!

•! Instruction so executed said to be in delay slot!

•! See SPARC ISA!

•! (example – loop counter update)!

–! In organization: move comparator to ID stage and
decide in the ID stage!

•! Reduces branch delay by 2 cycles!

•! Increases the cycle time!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 20!

Branch Prediction!
•! Prior solutions are “ugly”!

•! Better (& more common): guess in IF stage!

–! Technique is called “branch predicting”; needs 2 parts:!
•! “Predictor” to guess where/if instruction will branch (and to

where)!

•! “Recovery Mechanism”: i.e. a way to fix your mistake!

–! Prior strategy:!
•! Predictor: always guess branch never taken!

•! Recovery: flush instructions if branch taken!

–! Alternative: accumulate info. in IF stage as to…!

•! Whether or not for any particular PC value a branch was
taken next!

•! To where it is taken!

•! How to update with information from later stages!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 21!

A Branch Predictor!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 22!

Computing Performance!
•! Program assumptions:!

–! 23% loads and in $ of cases, next instruction uses load value!

–! 13% stores!

–! 19% conditional branches!

–! 2% unconditional branches!

–! 43% other!

•! Machine Assumptions:!

–! 5 stage pipe with all forwarding!

•! Only penalty is 1 cycle on use of load value immediately after a
load)!

•! Jumps are totally resolved in ID stage for a 1 cycle branch penalty!

•! 75% branch prediction accuracy!

•! 1 cycle delay on misprediction!

Example 5!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 23!

Examples…!

Examples 6-9!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 24!

Exception Hazards!
•! 40hex: ! !sub !$11, $2, $4!

•! 44hex: ! !and !$12, $2, $5!

•! 48hex: ! !or !$13, $6, $2!

•! 4bhex: ! !add !$1, $2, $1 !(overflow in EX stage)!

•! 50hex: ! !slt !$15, $6, $7 !(already in ID stage)!

•! 54hex: ! !lw !$16, 50($7) !(already in IF stage)!

•! …!

•! 40000040hex:! !sw !$25, 1000($0) !exception handler!

•! 40000044hex:! !sw !$26, 1004($0)!

•! Need to transfer control to exception handler ASAP!

–! Don#t want invalid data to contaminate registers or memory!

–! Need to flush instructions already in the pipeline!

–! Start fetching instructions from 40000040hex!

–! Save addr. following offending instruction (50hex) in TrapPC (EPC)!

–! Don#t clobber $1 – use for debugging!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 25!

Flushing pipeline after exception!

•! Cycle 6:!

–! Exception detected, flush signals generated, bubbles injected!

•! Cycle 7!

–! 3 bubbles appear in ID, EX, MEM stages!

–! PC gets 40000040hex, TrapPC gets 50hex!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 26!

Discussion!
•! How does instruction set design impact pipelining?!

•! Does increasing the depth of pipelining always
increase performance?!

University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 27!

Comparative Performance!

•! Throughput: instructions per clock cycle = 1/cpi!

–! Pipeline has fast throughput and fast clock rate!

•! Latency: inherent execution time, in cycles!

–! High latency for pipelining causes problems!
•! Increased time to resolve hazards!

Board! University of Notre Dame!

CSE 30321 – Lecture 17 – Pipelining Review + Hazards! 28!

Summary!
•! Performance:!

–!Execution time *or* throughput!

–!Amdahl#s law!

•! Multi-bus/multi-unit circuits!

–!one long clock cycle or N shorter cycles!

•! Pipelining!

–!overlap independent tasks!

•! Pipelining in processors!

–!“hazards” limit opportunities for overlap!

