Suggested Readings

+ Readings
— H&P: Chapter 4.5-4.7
+ (Over the next 3-4 lectures)

Lecture 17
Short Pipelining Review

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 4

CSE 30321 — Lecture 17 — Pipelining Review + Hazards

Pt e Recap: Pipelining improves throughput

Clock Number

AMD . Inst. # 1 2 4 5 6 7 8
Athlon Inst. i IF ID MEM wB
‘ Inst. i+1 IF EX MEM wB
64 AN
Inst. i+2 ID EX MEM wB
Goal:
Describe the fundamental components required in Inst. i+3 IF ID EX MEM WB

a single core of a modern microprocessor as well
as how they interact with each other, with main
memory, and with external storage media.

[. : s
‘ for i=0; i<5; i++ {

a = (a*b) + c;
}

MULT r1,r2,r3 #r1 € r2*r3
ADD r2,r1,r4 & #12 € rl4rd

- - g - 1

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100

Program execution order (in instructions)

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 5

Recap: pipeline math
+ If times for all S stages are equal to T:
— Time for one initiation to complete still ST
— Time between 2 initiates = T not ST
— Initiations per second = 1/T
Time for N initiations to complete: NT + (S-1)T

Throughput: Time per initiation =T + (S-1)T/N> T!

+ Pipelining: Overlap multiple executions of same
sequence

— Improves THROUGHPUT, not the time to perform a
single operation

University of Notre Dame
CSE 30321 — Lecture 17 — Pipelining Review + Hazards 7

Recap: Structural hazards
+ 1 way to avoid structural hazards is to duplicate
resources

—i.e.: An ALU to perform an arithmetic operation and an
adder to increment PC

+ If not all possible combinations of instructions can be
executed, structural hazards occur

+ Most common instances of structural hazards:
— When a functional unit not fully pipelined
— When some resource not duplicated enough

University of Notre Dame

s W
Instruction 1 Mﬁ
Instruction 2 ﬁ

Instruction 3

Instruction 4

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 6

Recap: Stalls and performance
Stalls impede progress of a pipeline and result in
deviation from 1 instruction executing/clock cycle
Pipelining can be viewed to:

— Decrease CPI or clock cycle time for instruction

— Let’s see what affect stalls have on CPI...

CPI pipelined =

— Ideal CPI + Pipeline stall cycles per instruction

— 1 + Pipeline stall cycles per instruction

Ignoring overhead and assuming stages are balanced:

Speedup = CPI unpipelined

1+ pipeline stall cycles per instruction

If no stalls, speedup equal to # of pipeline stages in
ideal case

University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards

Recap: Structural hazard example

-

i I - |
@ﬁﬂ
BE s aE

| Reg

A=

/

Time What’s the problem here?

B —

University of Notre Dame

CSE 30321 - Lecture 17 — Pipelining Review + Hazards 9 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 10

Recap: Data hazards Recap: Forwarding & data hazards
) + Problem illustrated on previous slide can actually be solved
+ Why do they exist??? relatively easily —
— Pipelining changes order or read/write accesses to
operands + In this example, result of the ADD instruction not really needed
— Order differs from order seen by sequentially executing until after ADD actually produces it
instructions on un-pipelined machine
+ Consider this example: All instructions after ADD use + Can we move the result from EX/MEM register to the beginning of
_ ADD R1. R2. R3 result of ADD ALU (where SUB needs it)?
_ SUB R4: R1: R5 | . | — Yes! Hence this slide!
_ AND R6. Ri. R7 ADD writes the register in WB
P but SUB needs it in ID. + Generally speaking:
— ORR8, R1, R9 — Forwarding occurs when a result is passed directly to functional unit
— XOR R10, R1, R11 This is a data hazard that requires it.
— Result goes from output of one unit to input of another
CSE 30321 — Lecture 17 — Pipelining Review + Hazards 11 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 12
Recap: Forwarding doesn’t always work Recap: HW change for forwarding
ID/EX EX/MEM MEM/WE
LW R1, 0(R2) “EH: B Reg
L_r Load has a latency that
B forwarding can’t solve.
SUB R4, R1, R5
|1 Pipeline must stall until e zero’
hazard cleared (starting v u
AND R6, R1, R7 J:H \ = with instruction that _g "
i wants to use data until >
source produces it). . "l
ata
OR R8, R1, R9 n Reg :’M M em ory 4
Time _—:l . "
_ e X
Can’t get data to subtract b/c result needed at beginning of

CC #4, but not produced until end of CC #4.

University of Notre Dame

University of Notre Dame

CSE 30321 - Lecture 17 — Pipelining Review + Hazards 13 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 14

Recap: Hazards vs. dependencies Recap: Branch/Control Hazards
- dependence: fixed property of instruction stream + So far, we’ve limited discussion of hazards to:
— (i.e., program) — Arithmetic/logic operations
+ hazard: property of program and processor — Data transfers
organization + Also need to consider hazards involving branches:
— implies potential for executing things in wrong order — Example:
- potential only exists if instructions can be simultaneously * 40: beq $1, $3, $28 # ($28 gives address 72)
“in-flight” - 44: and $12, $2, $5
- property of dynamic distance between instructions vs. + 48: or $13, $6, $2
pipeline depth - 52: add $14, $2, $2
+ For example, can have RAW dependence with or s 7211w $4,50(87)
without hazard + How long will it take before the branch decision takes

effect?

— depends on pipeline . .
— What happens in the meantime?

University of Notre Dame University of Notre Dame
CSE 30321 — Lecture 17 — Pipelining Review + Hazards 15 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 16

Recap: How branches impact a pipeline Recap: Or assume branch is not taken

clock cycle: CC1 CC2 CC3 CC4 CC5 CC6 CC7 cCs CC9 .
+ On average, branches are taken 2 the time

— If branch not taken...
+ Continue normal processing
— Else, if branch is taken...
* Need to flush improper instruction from pipeline

40 beq $1, $3, 28| I8

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

+ Cuts overall time for branch processing in 2

72 lw $4, 50($7)

If branch condition true, must skip 44, 48, 52

— But, these have already started down the pipeline

— They will complete unless we do something about it
How do we deal with this?

— We’ll consider 2 possibilities

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 17 — Pipelining Review + Hazards 17 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 18

Recap: Branch penalty impact

- Assume 16% of all instructions are branches
— 4% unconditional branches: 3 cycle penalty
— 12% conditional: 50% taken

+ For a sequence of N instructions (assume N is large)
* N cycles to initiate each

+ 3%0.04 * N delays due to unconditional branches Lectu re 1 7

+ 0.5*3*0.12 * N delays due to conditional taken WI" D . n f H rd

+ Also, an extra 4 cycles for pipeline to empty ap-up Discussio O_ azardas
+ Total:

— 1.3*N + 4 total cycles (or 1.3 cycles/instruction) (CPI)
+ 30% Performance Hit!!! (Bad thing)

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 19 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 20
Branch Penalty Impact Branch Prediction
+ Some solutions: + Prior solutions are “ugly”
— InISA: branches always execute next 1 or 2 instructions - Better (& more common): guess in IF stage
- Instruction so executed said to be in delay slot — Technique is called “branch predicting”’; needs 2 parts:
- See SPARC ISA + “Predictor” to guess where/if instruction will branch (and to
where)

+ (example — loop counter update)

— In organization: move comparator to ID stage and
decide in the ID stage

+ “Recovery Mechanism”: i.e. a way to fix your mistake

— Prior strategy:
+ Predictor: always guess branch never taken

| :Reduces btr:nch c:elta}y by 2 cycles + Recovery: flush instructions if branch taken
* Increases the cycle time . . .
y — Alternative: accumulate info. in IF stage as to...
+ Whether or not for any particular PC value a branch was
taken next

+ To where it is taken
* How to update with information from later stages

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 21

A Branch Predictor

Normal PC value

Instruction
Memory

uess Brancl Branch Branch
Prediction Update
Logic Information

Guess as to where \
to branch

University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards PX]

Examples...

Examples 6-9

University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 22

Computing Performance

+ Program assumptions:
— 23% loads and in 'z of cases, next instruction uses load value
— 13% stores
19% conditional branches
— 2% unconditional branches
— 43% other
+ Machine Assumptions:
— 5 stage pipe with all forwarding

« Only penalty is 1 cycle on use of load value immediately after a
load)

+ Jumps are totally resolved in ID stage for a 1 cycle branch penalty
+ 75% branch prediction accuracy ‘
+ 1 cycle delay on misprediction

”Exémple 5

University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards

Exceptlon Hazards

< 40, $11, $2, $4

« 44, and $12, $2, $5
48, or $13, $6, $2

+ 4by,: add $1, $2, $1 (overflow in EX stage)
50p,c,: sit $15, $6, $7 (already in ID stage)

© B4y Iw $16, 50($7) (already in IF stage)
40000040, sw $25, 1000($0) exception handler

- 40000044,,,: sw $26, 1004($0)

Need to transfer control to exception handler ASAP
— Don’t want invalid data to contaminate registers or memory
— Need to flush instructions already in the pipeline
— Start fetching instructions from 40000040,
— Save addr. following offending instruction (50,,,) in TrapPC (EPC)
— Don’t clobber $1 — use for debugging

University of Notre Dame

CSE 30321 - Lecture 17 — Pipelining Review + Hazards 25 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 26

Flushing pipeline after exception Discussion

clock cycle: CC1 C€C2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 cC12 « How does instruction set design impact pipelining?

40 sub $11, $2, $4 @

44 and $12, $2, $5

exception detected

48 or $13, $6, $2 7 when add is in EX stage

4b add $§1, $2, §1

+ Does increasing the depth of pipelining always
increase performance?

50 slt $15, $6, $7
48 1w $16, 50($7)

40000040 sw $25, 1000(0)
+ Cycle6:
— Exception detected, flush signals generated, bubbles injected
Cycle 7
— 3 bubbles appear in ID, EX, MEM stages
— PC gets 40000040,,, TrapPC gets 50,

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 17 — Pipelining Review + Hazards 27 CSE 30321 — Lecture 17 — Pipelining Review + Hazards 28

Comparative Performance Summary

Performance:

_4 4 pipelined . .
% multicycle pipelined E single-cycle - ExeCUtlon tlme *Or* thrOUghpUt
- S y
® o & —Amdahl’s law
g s 9 . . i - .
3 H « Multi-bus/multi-unit circuits
° %‘ single-cycle £ 3 multicycle —one long clock cycle or N shorter cycles
E . 5 . « Pipelining
slower faster 1 several = .
instruction throughput instruction latency - overlap Independent tasks

* Pipelining in processors

+ Throughput: instructions per clock cycle = 1/cpi
—“hazards” limit opportunities for overlap

— Pipeline has fast throughput and fast clock rate
+ Latency: inherent execution time, in cycles

— High latency for pipelining causes problems
» Increased time to resolve hazards

University of Notre Dame

University of Notre Dame

