Suggested Readings

- Readings
 - H&P: Chapter 4.5-4.7
 - (Over the next 3-4 lectures)

Lecture 17 Short Pipelining Review

University of Notre Dar	ne				Univers	sity of Not	re Dame			
CSE 30321 – Lecture 17 – Pipelining F	CSE 30321 – Lecture 17 – Pipelining Review + Hazards									
Multicore processors and programming	Processor comparison	Recap	: Pi	ipeli	ning	Clock Nu	Drov	es tl	hrou	ighpu
		Inst. #	1	2	3	4	5	6	7	8
	Athlon"	Inst. i	IF	ID	EX	MEM	WB			
	VS. Pentium	Inst. i+1		IF	ID	EX	MEM	WB		
	Dual-Core inside	Inst. i+2			IF	ID	EX	MEM	WB	
Describe the fundamental components r	equired in	Inst. i+3				IF	ID	EX	MEM	WB
as how they interact with each other, with memory, and with external storage media with external storage media wit	for i=0; i<5; i++ { a = (a*b) + c; } \downarrow MULT r1,r2,r3 # r1 \in r2*r3 ADD r2,r1,r4 \downarrow # r2 \in r1+r4 110011 00001 000011 000101 001110 000010 000011 000100 HLL code translation	Program execution order (in instructions)	IM	IM	Reg	Reg	Reg DM Reg	Reg DM	Reg	Time

University of Notre Dame

Recap: pipeline math

- If times for all S stages are equal to T:
 - Time for one initiation to complete still ST
 - Time between 2 initiates = T not ST
 - Initiations per second = 1/T

Time for N initiations to complete: Throughput:

resources

usual "1"

adder to increment PC

executed, structural hazards occur

NT + (S-1)T Time per initiation = T + (S-1)T/N \rightarrow T!

- Pipelining: Overlap multiple executions of same sequence
 - Improves THROUGHPUT, not the time to perform a single operation

University of Notre Dame CSE 30321 – Lecture 17 – Pipelining Review + Hazards

Recap: Structural hazards

- i.e.: An ALU to perform an arithmetic operation and an

If not all possible combinations of instructions can be

1 way to avoid structural hazards is to duplicate

Most common instances of structural hazards:

- When some resource not duplicated enough

- When a functional unit not fully pipelined

Recap: Stalls and performance

CSE 30321 – Lecture 17 – Pipelining Review + Hazards

- Stalls impede progress of a pipeline and result in deviation from 1 instruction executing/clock cycle
- Pipelining can be viewed to:
 - Decrease CPI or clock cycle time for instruction
 - Let's see what affect stalls have on CPI...
- CPI pipelined =
 - Ideal CPI + Pipeline stall cycles per instruction
 - 1 + Pipeline stall cycles per instruction
- Ignoring overhead and assuming stages are balanced:

CPI unpipelined

 $Speedup = \frac{1}{1 + pipeline stall cycles per instruction}$

 If no stalls, speedup equal to # of pipeline stages in ideal case

University of Notre Dame

CSE 30321 – Lecture 17 – Pipelining Review + Hazards

Recap: Structural hazard example

Pipelines stall result of hazards, CPI increased from the

Recap: Data hazards

- These exist because of pipelining
- Why do they exist???
 - Pipelining changes order or read/write accesses to operands
 - Order differs from order seen by sequentially executing instructions on un-pipelined machine
- Consider this example:
 - ADD **R1**, **R2**, **R3**
 - SUB R4, R1, R5
 - AND R6, R1, R7
 - OR R8, R1, R9
 - XOR R10, R1, R11

- All instructions after ADD use result of ADD
- ADD writes the register in WB but SUB needs it in ID.
 - This is a data hazard

CSE 30321 – Lecture 17 – Pipelining Review + Hazards

Recap: Forwarding & data hazards

- Problem illustrated on previous slide can actually be solved relatively easily with <u>forwarding</u>
- In this example, result of the ADD instruction not <u>really</u> needed until after ADD actually produces it
- Can we move the result from EX/MEM register to the beginning of ALU (where SUB needs it)?
 - Yes! Hence this slide!
- Generally speaking:
 - Forwarding occurs when a result is passed directly to functional unit that requires it.

University of Notre Dame

CSE 30321 - Lecture 17 - Pipelining Review + Hazards

Recap: HW change for forwarding

- Result goes from output of one unit to input of another

University of Notre Dame

CSE 30321 - Lecture 17 - Pipelining Review + Hazards

Recap: Forwarding doesn't always work

Load has a latency that forwarding can't solve.

Pipeline must stall until hazard cleared (starting with instruction that wants to use data until source produces it).

Can't get data to subtract b/c result needed at beginning of CC #4, but not produced until end of CC #4.

University of Notre Dame

12

Recap: Hazards vs. dependencies

- <u>dependence</u>: fixed property of instruction stream
 - (i.e., program)
- <u>hazard</u>: property of program <u>and processor</u> organization
 - implies potential for executing things in wrong order
 - potential only exists if instructions can be simultaneously "in-flight"
 - property of dynamic distance between instructions vs. pipeline depth
- For example, can have RAW dependence with or without hazard
 - depends on pipeline

Recap: Branch/Control Hazards

- So far, we've limited discussion of hazards to:
 - Arithmetic/logic operations
 - Data transfers
- Also need to consider hazards involving branches:
 - Example:

13

15

- 40: beq \$1, \$3, \$28 # (\$28 gives address 72)
- 44: and \$12, \$2, \$5
- 48: or \$13, \$6, \$2
- 52: add \$14, \$2, \$2
- 72: lw \$4, 50(\$7)
- How long will it take before the branch decision takes effect?
 - What happens in the meantime?

University of Notre Dame

CSE 30321 – Lecture 17 – Pipelining Review + Hazards

Recap: How branches impact a pipeline

- If branch condition true, must skip 44, 48, 52
 - But, these have already started down the pipeline
 - They will complete unless we do something about it
- How do we deal with this?
 - We'll consider 2 possibilities

University of Notre Dame

CSE 30321 - Lecture 17 - Pipelining Review + Hazards

16

Recap: Or assume branch is *not taken*

- On average, branches are taken 1/2 the time
 - If branch not taken...
 - Continue normal processing
 - Else, if branch is taken...
 - Need to <u>flush improper instruction</u> from pipeline
- Cuts overall time for branch processing in ¹/₂

Recap: Branch penalty impact

- Assume 16% of all instructions are branches
 - 4% unconditional branches: 3 cycle penalty
 - 12% conditional: 50% taken
- For a sequence of N instructions (assume N is large)
 - N cycles to initiate each
 - 3 * 0.04 * N delays due to unconditional branches
 - 0.5 * 3 * 0.12 * N delays due to conditional taken
 - Also, an extra 4 cycles for pipeline to empty
- Total:
 - 1.3*N + 4 total cycles (or 1.3 cycles/instruction) (CPI)
 - 30% Performance Hit!!! (Bad thing)

Lecture <u>17</u> Wrap-up Discussion of Hazards

University of Notre Dame

CSE 30321 – Lecture 17 – Pipelining Review + Hazards

20

Branch Prediction

- Prior solutions are "ugly"
- Better (& more common): guess in IF stage
 - Technique is called "branch predicting"; needs 2 parts:
 - "Predictor" to guess where/if instruction will branch (and to where)
 - "Recovery Mechanism": i.e. a way to fix your mistake
 - Prior strategy:

19

- Predictor: always guess branch never taken
- Recovery: flush instructions if branch taken
- Alternative: accumulate info. in IF stage as to...
 - Whether or not for any particular PC value a branch was taken next
 - To where it is taken
 - How to update with information from later stages

• Some solutions:

- In ISA: branches always execute next 1 or 2 instructions

University of Notre Dame

CSE 30321 - Lecture 17 - Pipelining Review + Hazards

Branch Penalty Impact

- Instruction so executed said to be in delay slot
- See SPARC ISA
- (example loop counter update)
- In organization: move comparator to ID stage and decide in the ID stage
 - Reduces branch delay by 2 cycles
 - · Increases the cycle time

A Branch Predictor

Instruction

Memory

Branch

Logic

Prediction

Normal PC value

Ρ

Guess Branch

Guess as to where

to branch

22

Computing Performance

- Program assumptions:
 - 23% loads and in $\frac{1}{2}$ of cases, next instruction uses load value
 - 13% stores
 - 19% conditional branches
 - 2% unconditional branches
 - 43% other
- Machine Assumptions:
 - 5 stage pipe with all forwarding
 - Only penalty is 1 cycle on use of load value immediately after a load)
 - Jumps are totally resolved in ID stage for a 1 cycle branch penalty
 - 75% branch prediction accuracy
 - 1 cycle delay on misprediction

University of Notre Dame				University of Notre	e Dame	Example
CSE 30321 – Lecture 17 – Pipelining Review + Hazards 23		C	CSE 30321 – I	Lecture 17 – Pipelin	ing Review + Hazards	
Examples			Exc	eption H	lazards	
•	•	40 _{hex} :	sub	\$11, \$2, \$4		
	•	44 _{hex} :	and	\$12, \$2, \$5		
	•	48 _{hex} :	or	\$13, \$6, \$2		
	•	4b _{hex} :	add	\$1, \$2, \$1	(overflow in EX stage))
	•	50 _{hex} :	slt	\$15, \$6, \$7	(already in ID stage)	
	•	54 _{hex} :	lw	\$16, 50(\$7)	(already in IF stage)	
	•					
In the second seco	•	40000040 _{hex} :	sw	\$25, 1000(\$0)	exception handler	
	•	40000044 _{hex} :	SW	\$26, 1004(\$0)		
(1.7N) (6.1"	•	Need to transfer – Don't want inv	control to evalid data to	exception handle	r ASAP ers or memory	

21

Branch

Update

Information

- Start fetching instructions from 40000040_{hex}
- Save addr. following offending instruction (50_{hex}) in TrapPC (EPC)
- Don't clobber \$1 use for debugging

University of Notre Dame

Flushing pipeline after exception

clock cycle:	CC 1	CC 2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11	CC 12	
40 sub \$11, \$2,	\$4 IM	_Reg_	H	DM_	Reg								
44 and \$12, \$2.	\$5	IN _	Reg	- D		Reg							

18 or \$13, \$6, \$2	Image: A set of the s
łb add \$1, \$2, \$1	IM - Freg
50 slt \$15, \$6, \$7	MH Reg found found found
18 lw \$16, 50(\$7)	WII - Cubble Outble Outble Outble

- 40000040 sw \$25, 1000(0)
- Cycle 6:
 - Exception detected, flush signals generated, bubbles injected
- Cycle 7
 - 3 bubbles appear in ID, EX, MEM stages
 - PC gets 40000040_{hex}, TrapPC gets 50_{hex}

University of Notre Dame

CSE 30321 - Lecture 17 - Pipelining Review + Hazards

Comparative Performance

- Throughput: instructions per clock cycle = 1/cpi
 Pipeline has fast throughput and fast clock rate
- · Latency: inherent execution time, in cycles
 - High latency for pipelining causes problems
 - Increased time to resolve hazards

25

27

- Discussion
- How does instruction set design impact pipelining?

• Does increasing the depth of pipelining always increase performance?

University of Notre Dame CSE 30321 – Lecture 17 – Pipelining Review + Hazards

Summary

- Performance:
 - Execution time *or* throughput
 - Amdahl's law
- Multi-bus/multi-unit circuits
 - one long clock cycle or N shorter cycles
- Pipelining
 - overlap independent tasks
- Pipelining in processors
 - "hazards" limit opportunities for overlap

26

28