

CSE 30321 – Lecture 18 – In Class Handout

Part A: Example

- In the slides, I noted what would happen if Fetch/Memory took 100 ns
- Letʼs look at a slightly more optimistic case…

- The CPU has a 1 GHz clock rate
- The L1 cache access time is 1 ns

o (The L1 cache is a faster level of memory hierarchy)
- 90% of the time we find data in the L1 cache
- The Main Memory access time is 75 ns

o Thus, if we miss in the L1 cache, we pay a 75 ns penalty
- 1/3 of all instructions are loads and stores
- The base CPI of this machine is 1 (without considering caching)

What is the impact on CPI?
- First, how many instructions reference memory:

o 1 reference for fetch
o 0.33 for load/store
o Thus, there are 1.33 memory references/instruction

- 90% of the time we get an L1 hit – i.e. we find data in L1
- 10% of the time, we have to spend 75 ns

o 0.1 x 75 x 1.33

Thus, the new CPI is:
 = 1 + (0.1 x 75 x 1.33)
 = 10.975!

The take away:
- Even with a 90%, 1 CC hit rate, the performance impact can be fairly severe
- We need to be better

Part B: Average Memory Access Time

Data to processor

Request from processor X X

 Upper (e.g. register) Lower (e.g. cache)
 (or L1 $) (or main memory)

X resides in both levels; however, upper level could provide it faster!

Some terms:
- Hit Rate

o The % of the time we find data we want in an upper-level
- Hit Time

o Time to access the upper level of memory hierarchy
o Ideally this should be 1 – then 1 CC / memory access in a pipeline implementation makes

sense
- Miss Rate

o Just: 1- Hit Rate
- Miss Penalty

o Extra number of CCs required to get data if not in an upper-level of memory hierarchy

Therefore, the Average Memory Access Time is given by:

 AMAT = Hit Time + (1 – Hit Time) x Miss Penalty

 In the previous example: 1 + (1-0.9) x 75 ns 1 ns + 7.5 ns 8.5 CCs

Part C: Caches and their structures

Terms:
- Cache is the next level of memory up from registers
- Cache entries are usually referred to as blocks

o A block is the minimum amount of information that you can bring into a cache
- If we look for data in a cache and find it, we have a cache hit

o Otherwise, we have a cache miss
- The miss penalty is the number of clock cycles required to bring data form the next level of memory

hierarchy
o This may be DRAM, an L2 cache, an L3 cache, etc.

The number of memory stall cycles is given by:
 Instruction Count x Memory References/Instruction x Miss Rate x Miss Penalty

Basics:
When using an intermediate level of memory hierarchy, there are some important decisions to make:

1. Placement – where does a block go in the intermediate level?
2. Identification – how do we find data weʼre looking for in the cache?
3. Replacement – caches are finite in size

a. E.g. the upper layers of memory hierarchy generally get smaller
b. Therefore, we canʼt fit everything in the cache

4. What do we do about writes?

Cache Blocks:
- As mentioned, a “block” is the smallest amount of “stuff” (data) that can be brought into a cache

o Generally blocks are between 16-128 bytes of data
- Question:

o In MIPS, datawords are just 4 bytes of data.
o Why bring in 16-128 bytes of data?

- Answer:
o Locality
o (In other words, the idea is that because we referenced a particular data word or instruction

encoding, weʼll probably reference other stuff by that same data/instruction soon … so just
bring it closer to the datapath right away.)

- Therefore, a cache organization might look something like this:

…..
Block 0 Word 0 … Word N
Block 1 Word 0 … Word N
Block 2 Word 0 … Word N
Block 3 Word 0 … Word N
Block 4 Word 0 … Word N

Part D: Where does a block go in the cache?
- If a cache is an array of blocks, how do we choose where a block goes?

o There are 3 ways to decide

1. Direct Mapping

- As an example, letʼs say that we have 8 blocks in our cache and the address that we want to load

data from is 12.
- We can use the mod function to select where this block goes.

o E.g. 12 % 8 = Block 4
- Similarly

o 120 % 8 = Block 0
- What if we get the sequence of memory addresses: 12, 20, 12, 20, 12, 20, 12, 20 …

o Both map to Block 4!
o We have to replace a block with each reference

 (And with this sequence, we would never find the data in the cache)

2. Fully Associative Mapping

- If we have a cache with 8 blocks, the block can go anywhere

o E.g. it could be placed at Block 0, 1, 2, 3, 4, 5, 6, or 7
- The net effect:

o We could potentially eliminate conflicts like you just saw above
o However, the search time will realistically increase significantly

3. Set Associative Mapping
- This involves different sets of blocks
- See the picture below:

Location Data Set
0
1 0

2
3 1

4
5 2

6
7 3

- The basic idea is that a block maps to a set – and then can be placed anywhere within that set.

o Thus, you get some of the speed of a direct mapped cache (e.g. its easier to find where a
block maps too), but could eliminate some of the conflicts associated with a direct mapped
cache.

- Thus, if we have a request for the data at address 12, we would do a mod function with the number
of sets

o E.g. 12 % 4 = Set 0
o The block could then be placed anywhere within Set 0

 E.g. at Location 0 or Location 1

Part E: How do you find a block?
- The previous discussion focused on how where you place a block in a cache.
- Another question to consider is how you find data associated with a given block.

As an example, letʼs assume that we have the instruction: lw $5, 0($2)
- How do we find the data associated with “0($2)” in a cache?
- Well, in MIPS, we use 0($2) to calculate a 32-bit physical address
- Weʼll start with that – and divide the physical address up into 3 different fields

o Note that the procedure to be discussed applies even if the address is not 32 bits; we could
just as easily discuss an N-bit physical address.

Bit 31 Bit 0

Tag Index Offset

A very important thing to understand: How to use/interpret each field!

Letʼs start with the Index:
- The index bits are used to pick which block (for a direct mapped

cache) or which set (for a set-associative cache) an address will
map to

- For example, if there are 2 index bits, then there are 4 blocks or 4
sets in the cache that a physical address may map to

- Another example:
o If a cache has 1024 blocks in it, how many bits of index are needed to address each block?

 210 = 1024; therefore 10 bits
o If a cache has 1024 blocks in it and is 8-way set associative, how many bits of index are

needed?
 Note that 8-way set associative means that there are 8 blocks associated with a

given set
 However, note that the question explicitly states that there are only 1024 TOTAL

blocks in the cache
 210 blocks / 23 blocks / set = 27 sets. Therefore 7 bits of index are needed.

Letʼs look at the offset next:
- The offset bits are used to find the right word in a block

o Remember, even though an instruction encoding or data word may be 4 bytes long, blocks
usually contain anywhere from 16-128 bytes!

- The number of bits that comprise the offset depends on:
o If there is more than 1 word / block
o To what level a word can be addressed

 Remember, MIPS is byte addressable
- Example:

o If data is addressed to the word:
 If there is just 1 word / block, 0 bits of offset are needed
 If there are 2 words / block, 1 bit of offset is needed
 If there are 4 words / block, 2 bits of offset are needed

00 Block / Set 0
01 Block / Set 1
10 Block / Set 2
11 Block / Set 3

 If there are 8 words / block, 3 bits of offset are needed
 Etc., etc.

- But what if there are 2 words per block and data is byte addressable?

Word 1 Word 2
Byte Byte Byte Byte Byte Byte Byte Byte

- If each byte can be addressed, how many bits of offset are needed?

o Answer: 3
 There are 8 byte and 8 = 23 … so 3 bits are needed.

The remaining bits form the tag:
- The tag helps us to ensure that weʼre looking at the right entry.

Note that:
- The least significant bits of the physical address form the offset
- The next N bits of the physical address form the index
- The last / most significant bits of the physical address form the tag

Part F: Example
- Assume we have lw $8, 0($2)

o 0($2) turns out to be physical address: AA BB CC DD (in hex)
- The first place we would look to find the data associated with address AA BB CC DD is in the cache
- Letʼs assume our cache is:

o Direct mapped
o There are 16 words / block
o Data is addressed to the word
o There are 4096 blocks

How many bits of offset are needed?
- 4. 24 = 16.

o We need to pick one of the 16 words in a block

How many bits of index are needed?
- We need to be able to select 1 of 4096 blocks
- 212 = 4096
- Therefore 12 bits of index are needed.

The rest of the bits form the tag.
- Therefore there are 32 - 4 - 12 = 16 bits of tag

For this physical address we would have:

Tag Index Offset
AA BB CC D D

CCD = 1100 * 1100 * 1101 = 327710 th entry (or block)

 D = 1101 = 13th word in that block

See Board for Diagram.

