

Board Notes on Virtual Memory

Part A:
Why Virtual Memory?

- Letʼs user program size exceed the size of the physical address space
- Supports protection

o Donʼt know which program might share memory at compile time.

Consider the following:

- Above:
o Assume 4KB pages – therefore, think about “groups of 212 pieces of data”

- Usually, virtual address space is much greater than physical address space
o (Mapping allows code with virtual address to run on any machine.)

Part B:
How do we translate a Virtual Address to a Physical Address
(or alternatively, “How do we know where to start looking in memory?”)

- Good analogy: Itʼs like finding what cache block a physical address maps to.

Example:

- What if 32-bit virtual address (232 virtual addresses), 4KB pages (like above), 64 MB of main
memory (226 physical addresses)

How is this mapping done?

VPN (Virtual Page Number) OFFSET

PFN (Physical Frame Number) OFFSET

How do we do VPN PFN mapping?

- Leverage structure called page table
- To make analogy to cache, “data” = PFN
- To make analogy to cache, also have valid, dirty bits
-

- If no valid mapping, get page fault:
o Try to avoid
o Involves lots of disk traffic
o Placement in memory done fully associative, LRU to minimize
o Placement = some extra overhead, but small percent – and worth it to avoid M CC

penalty

Offset still the same because we go down the same distance

More specifically:
The process works like this…

Even more specifically…

- The page table is stored in memory
- The beginning of the page table is stored in the page table register
- OS knows where PT for each program begins; interfaces with architecture to find

Part C:
How big is the page table?

- Page table can actually become pretty big…
- Example #1:

o 4 KB pages
 Therefore need 212 (or 12 bits of offset)
 (Offset does same thing that it does in cache block – not just picks page entry)

o 32-bit virtual address
 32 – 12 = 20 bits of VPN

o 4 Byte / page table entry
 Holds LRU status, valid, dirty, PFN (~32 bits)

- Therefore, 220 entries in page table, each ~ 4 bytes each 4 Mbytes
o Not as big as memory, but what about cache?

Another Example…

- Assume
o Virtual address = 64 bits
o 4 KB pages
o 4 bytes/page

VPN (52 bits) Offset (12 bits)

- PT would be:

o 4.5 x 1015 x 4 ~ 1016 bytes 10 petabytes!
- Soluton(s):

o Multi-level, inverted page tables – youʼll learn about in OS

Part D:
Is page table / virtual address translation slow?

- It can be have maybe 2 references / translation
- Solution: TLB = “Translation Lookaside Buffer”

o Fast cache for page table

What does the TLB look like?

- Itʼs a really small, fully associative cache

Virtual Page # Physical Frame # Dirty LRU Valid

1. All of the virtual page numbers would be searched for a match
2. The physical frame number is the data that is supplied
3. The physical frame number is concatenated with an offset to form a physical address

Where is the TLB on the critical path?

See flow chart below / in notes:

Part E: Example 1:
Assume a machine with the following characteristics:

- The CPU supplies a 64 bit virtual address.
- The 64 bit virtual address must be translated into a 64 bit physical address.
- This single core machine has 2 levels of cache.
- The clock rate is 1 GHz.

Question A:
The page table has 232 entries. Determine the physical address associated with the virtual
address using portions of the memory state of the machine provided below. (Addresses hex.)
Page Table Register: AAAA 0000 0000 0000
Virtual Address: 0000 BBBB 0000 AAAA

 Address
(least significant to most significant) Data

1 0000, 0000, 0000, 0000 FEDC, BA98, 7654, 3210
2 0000, 0000, 1111, 1111 0123, 4567, 89AB, CDEF
3 0000, 0000, AAAA, 0000 0000, 0000, 3333, 7777
4 0000, 0000, DDDD, 9988 2222, 7777, 8888, 4444
5 0000, 000F, 0000, 0000 E1E1, 0E1E, 10E1, E100
6 0000, BBBB, 0000, AAAA 0000, 0000, EEEE, FFFF
7 0000, BBBB, AAAA, AAAA 0000, 0000, 9999, 2222
8 000A, AAA0, 0000, 0000 0000, 0000, 2222, 2222
9 0BBB, AAAA, 0000, AAAA 0000, 0000, 5555, 4444
10 AAAA, 0000, 0000, 0000 0000, 0000, BBBB, CCCC
11 AAAA, 0000, 0000, BBBB 0000, 0000, FFFF, EEEE
12 AAAA, BBBB, BBBB, AAAA 1111, 0000 AAAA, 0000
13 BBBB, AAAA, 0000, 0000 0000, 0000, 9999, 1111
14 BBBB, BBBB, BBBB, AAAA 0000, 0000, 9999, 8888
15 CCCC, CCCC, DDDD, DDDD 8888, 9999, 0000, 1111
16 FFFF, CCCC, DDDD, AAAA 1111, 1111, 0000, AAAA

Goto memory location AAAA 0000 0000 0000
 + 0000 BBBB
 AAAA 0000 0000 BBBB
Get: 0000 0000 FFFF EEEE
Physical address is: FFFF EEEE 0000 AAAA

Question B:
The physical address generated above is then sent to a direct mapped, L1 cache. The L1
cache has the following characteristics:

- The cache has 4096 blocks.
- There are 256, 32-bit words in each block. Addresses are to the word.
- The cache can hold 4 MB (i.e. 4,194,304 bytes) of data.

Using the physical address found in Part A, fill in the following table:

Index 0AA

Offset AA

Tag FFFF EEEE 000

Physical address: FFFF EEEE 0000 AAAA

4096 Blocks 212 12 bits of index 0AA

256 words/block 28 words/block 8 bits of offset AA

Therefore there are 64 – 12 – 8 = 44 bits of tag FFFF EEEE 000

Question C:
Assume that you have a sequence of 3 virtual addresses that you need to convert to physical
addresses. The first virtual address takes 3 nanoseconds to translate to a physical address.
The second virtual address takes 300,000 nanoseconds to translate to a physical address.
The third virtual address takes 100 nanoseconds to translate to a physical address. For each
virtual address, briefly comment on the critical path of translation.

3 ns TLB hit + cache hit

300000 ns TLB miss + page fault

100 ns (1) TLB Miss + Page Table Hit OR
(2) TLB Hit + Cache Miss

Part E: Example 2:
Assume that the 1st three lines of code for Microsoft Word are as follows – really!

 Address 1: 10000 # static variable 10000
 Address 2: 20000 # static variable 20000
 Address 3: Load R17 Address 1 # Load 10000 into R17

Thus, we want to load the data at address 1 of the Microsoft Word assembly code into register
#17.

Question A:
Using a modern superscalar machineʼs datapath as context (with two levels of on-chip cache),
list all of the steps involved with loading this initial value stored in the program code written by
Microsoft into physical register #17. You have just turned your machine on and are loading
Microsoft Word for the first time.

TLB Miss, Page Table Lookup, TLB Update, L1 $ Miss, L2 $ Miss, Memory Reference, L2
Update, L1 Update, data into R17.

Question B:
Provide a rough estimate of the amount of time that this would take.

Seconds!

