

Board Notes on Memory Organization and Disk I/O

Part A: Memory Organization
Main memory can be organized in several different ways (see picture below)

Part A:
Given:

- A cache block size of 4 words
- 1 CC to send and address to memory (e.g. time on bus)
- 10 CCs for each DRAM access initiated
- 1 CC to send a word of data on the bus

For a one-word-wide configuration, what is the miss penalty? How many bytes are transferred per CC?

- Miss penalty:
o 1 CC to send address + number of accesses x (access time + transfer time)

 Transfer time is # of times bus is used
o Therefore:

 1 + 4 x (10 + 1)
 1 + 4 x (11)
 45

- Bytes / CC

o 4 words x (4 bytes / word) / 45 CCs = 0.36 Bytes / CC
-

Part B:
Now, if we use wider memory/cache, also need to increase the bandwidth between levels – otherwise, the wider
memory/cache is not much good! For this example, letʼs add BW and assume the following:

- Main memory is 4 words wide
- We have the same cache/memory access times as before.

What is the miss penalty? How many bytes are transferred per clock cycle?

- Miss penalty:
o 1 CC to send address + number of accesses x (access time + transfer time)

 Transfer time is # of times bus is used
o Therefore:

 1 + 1 x (10 + 1)
 1 + 1 x (11)
 12

- Bytes / CC

o 4 words x (4 bytes / word) / 12 CCs = 1.33 Bytes / CC
o 4x better, but 4x more HW too.

Part C:
With multiple DRAM chips, we could interleave them to get some parallelism and organize the data such that
parallel reads are in fact practical. Further, assume the following:

- The bandwidth between the cache and main memory is the same as in Part A
- DRAM banks are one word wide
- By sending an address, all 4 banks can be addressed simultaneously, but data must be sent back

serially.

What is the miss penalty? How many bytes are transferred per clock cycle?

- Miss penalty:
o Send time + access time x transfer time
o 1 + 10 x (4 x 1)
o 15 CCs

- Bytes / CC

o 4 words x (4 bytes / word) / 15 CCs = 1.1 Bytes / CC
o 12 vs. 15 – for 75% less bandwidth!

Part B: Disk Seek Time

Part A:
A disk has the following parameters:

- 3600 RPM (= 60 Rotations per second – may help to think in terms of tracks per second)
- Average seek time = 9 ms
- 100 sectors per tack, 512 bytes per sector
- Controller + queuing delays = 1 ms

What is the average time to read 1 sector (512 Bytes)?

Rate_transfer = 100 sectors/track * 512 Bytes/sector * 60 RPS = 2.4 MB/s
T_transfer = 512 B / 2.4 MB/s = 0.2 ms
T_rotation = 0.5 / 60 RPS = 8.3 ms
 (on average, disk must rotate ½ way around)

T_disk = 9 ms (seek) + 8.3 ms (rotation) + 0.2 ms (transfer) + 1 ms (controller) = 18.5 ns

Notes:

- T_transfer only small part! What does this suggest?
o Bring in lots of information at a time so you don’t have to pay mechanical overhead

- Also, t_queuing can get worse with more requests pending.

Part B:
A disk drive has 15 platters. Each platter has 2 surfaces. The drive has 250 cylinders. Each track has 256
sectors. Each sector has 64 bytes. The average seek time is 3 ms.

What is the average disk access time if we want to transfer 4,096 bytes (i.e. 4KB) of data, our disk rotates
at 15,000 RPM, and there is a controller overhead of 2 ms? Be exact. Do not round.

Answer:
 Transfer Rate =
 0.25 rotations / ms * 256 sectors / track * 64 bytes / sector = 4096 bytes/ms

Average Disk Access Time =
 3 ms (for average seek time) +
 .5 / [15000 RPM * (1 min / 60s) * (1 s / 1000 ms)]$ +
 4096 bytes / 4096 bytes / ms+
 2 (controller overhead)
 Average Disk Access Time =
 3 + 0.125 ms + 1 ms + 2 ms
 Average Disk Access Time =
 6.125 ms

Part C: Disk Seek Time

The test sequence is: 1011, 57, 272, 40, 512, 717, 320
The disk head starts at 117.

Part A:
What is the total distance the disk head moves with the Shortest Seek Time First algorithm?

Answer: 117  57  40  272  320  512  717  1011
 (117-57) + (57-40) + (272-40) + (320-272) + (512-320) + (717-512) + (1011-717)
 = 1048

Part B:
There is a potential problem with using the Shortest Seek Time First (SSTF) algorithm. In 10 words or
less, describe it.

Answer: Starvation

