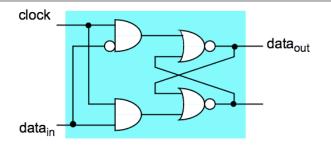
Suggested Readings

• Readings


– H&P:

Lectures 22 Storage and I/O

University of Notre Dame	University of Notre Dame
CSE 30321 – Lecture 22 – Storage and I/O 3	CSE 30321 – Lecture 22 – Storage and I/O
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<pre>storage Hierarchy II: Main Memory memory</pre>
Writing more	© 2004 by Lebeck, Sorin, Roth, COMPSCI 220 / ECE 252 Lecture Notes
efficient code The right HW for the	Hill, Wood, Sohi, Smith, Storage Hierarchy II: Main Memory
right application	Vijaykumar, Lipasti

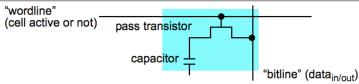
University of Notre Dame

SRAM (Static Random Access Memory)

- "logic" (CPU process, registers are SRAM)
- store bits in flip-flops (cross-coupled NORs)
- not very dense (six transistors per bit)
- + fast
- + doesn't need to be "refreshed" (data stays as long as power is on)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy I: Caches

University of Notre Dame


CSE 30321 – Lecture 22 – Storage and I/O

DRAM Chip Specs

Year	#bits	Access Time	Cycle Time
1980	64Kb	150ns	300ns
1990	1Mb	80ns	160ns
1993	4Mb	60ns	120ns
2000	64Mb	50ns	100ns
2004	1Gb	45ns	75ns

- density: +60% annual
 - Moore's law: density doubles every 18 months
- speed: %7 annual

DRAM (Dynamic Random Access Memory)

- bit stored as charge in capacitor
 - optimized for density (1 transistor for DRAM vs. 6 for SRAM)
- capacitor discharges on a read (destructive read)
 - read is automatically followed by a write (to restore bit)
- charge leaks away over time (not static)
 - refresh by reading/writing every bit once every 2ms (row at a time)
- access time = time to read
- cycle time = time between reads > access time

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

University of Notre Dame

CSE 30321 – Lecture 22 – Storage and I/O

Comparison with SRAM

SRAM

- · optimized for speed, then density
 - + 1/4-1/8 access time of DRAM
 - 1/4 density of DRAM
- bits stored as flip-flops (4-6 transistors per bit)
- static: bit not erased on a read
 - + no need to refresh

 - + access time = cycle time

context of leakage!

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Simple Main Memory

Example: Simple Main Memory

- 32-bit wide DRAM (1 word of data at a time)
 pretty wide for an actual DRAM
- access time: 2 cycles (A)
- transfer time: 1 cycle (T)
 - time on the bus
- cycle time: 4 cycles (B = cycle time access time)
 B includes time to refresh after a read
- · what is the miss penalty for a 4-word block?

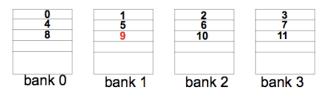
cycle	addr	mem
1	12	Α
2		Α
3		T/B
2 3 4 5		В
	13	Α
6		Α
7		T/B
8		В
9	14	Α
10		Α
11		T/B
12		В
13	15	Α
14		Α
15		T/B
16		В

- 4-word cycle = 16 cycles
- can we speed this up?
 - lower latency?
 no
 - A.B & T are fixed
 - A, B & T are fixed
 - higher bandwidth?

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijavkumar, Lipasti

Storage Hierarchy II: Main Memory

COMPSCI 220 / ECE 252 Lecture Notes


University of Notre Dame

CSE 30321 - Lecture 22 - Storage and I/O

Bandwidth: Simple Interleaving/Banking

use multiple DRAMs, exploit their aggregate bandwidth

- each DRAM called a bank
 - not true: sometimes collection of DRAMs together called a bank
- M 32-bit banks
- · simple interleaving: banks share address lines
- word A in bank (A % M) at (A div M)
 e.g., M=4, A=9: bank 1, location 2

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

University of Notre Dame

CSE 30321 – Lecture 22 – Storage and I/O

Bandwidth: Wider DRAMs

new parameter

64-bit DRAMs

4-word cycle = 8 cycles

- 64-bit bus
 - wide buses (especially off-chip) are hard
 - electrical problems
- 64-bit DRAM is probably too wide

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

University of Notre Dame

Simple Interleaving

cycle	addr	bank0	bank1	bank2	bank3
1	12	A	A	A	A
2		A	A	Α	A
3		T/B	B	B	В
4		В	T/B	В	В
5				Т	В
6					Т

4-word access = 6 cycles

+ overlap access with transfer

disks

buses

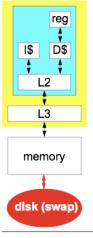
parameters

extensions

+ and still use a 32-bit bus!

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

University of Notre Dame


CSE 30321 – Lecture 22 – Storage and I/O

Storage Hierarchy III: I/O System

often boring, but still guite important

performance: latency & throughput

ostensibly about general I/O, mainly about disks

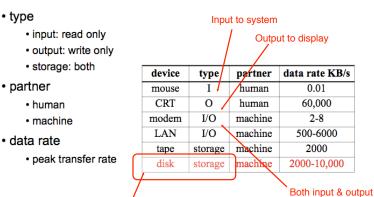
© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

Processor/Memory Integration

the next logical step: processor and memory on same chip

- move on-chip: FP, L2 caches, graphics. why not memory?
- problem: processor/memory technologies incompatible
 - different number/kinds of metal layers
 - DRAM: capacitance is a good thing, logic: capacitance a bad thing

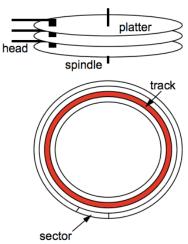
what needs to be done?


- use some DRAM area for simple processor (10% enough)
- · eliminate external memory bus, milk performance from that
- integrate interconnect interfaces (processor/memory unit)
- re-examine tradeoffs: technology, cost, performance
- research projects: PIM, IRAM

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

University of Notre Dame

CSE 30321 - Lecture 22 - Storage and I/O


I/O Device Characteristics

Of interest to this discussion

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

Disk Parameters

 1–20 platters (data on both sides) magnetic iron-oxide coating 1 read/write head per side

- 500–2500 tracks per platter
- 32–128 sectors per track
 - · sometimes fewer on inside tracks
- 512–2048 bytes per sector
 - · usually fixed number of bytes/sector

What metrics are

important for what

applications?

- data + ECC (parity) + gap
- 4–24GB total
- 3000–10000 RPM

© 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

University of Notre Dame

CSE 30321 - Lecture 22 - Storage and I/O

Disk Usage Models

- data mining + supercomputing
 - · large files, sequential reads
 - raw data transfer rate (rate_{transfer}) is most important
- transaction processing
 - large files, but random access, many small requests
 - IOPS is most important
- time sharing filesystems
 - · small files, sequential accesses, potential for file caching
 - IOPS is most important

must design disk (I/O) system based on target workload

use disk benchmarks (they exist)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O **Disk Performance Example**

- parameters
 - 3600 RPM \Rightarrow 60 RPS (may help to think in units of tracks/sec)
 - avg seek time: 9ms
 - 100 sectors per track, 512 bytes per sector
 - controller + queuing delays: 1ms
- Q: average time to read 1 sector (512 bytes)?
 - rate_{transfer} = 100 sectors/track * 512 B/sector * 60 RPS = 2.4 MB/s
 - t_{transfer} = 512 B / 2.4 MB/s = 0.2ms
 - t_{rotation} = .5 / 60 RPS = 8.3ms
 - t_{disk} = 9ms (seek) + 8.3ms (rotation) + 0.2ms (xfer) + 1ms = 18.5ms
 - t_{transfer} is only a small component! counter-intuitive?
 - end of story? no! t_{aueuing} not fixed (gets longer with more requests)

© 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

University of Notre Dame

CSE 30321 - Lecture 22 - Storage and I/O

Disk Alternatives

- solid state disk (SSD)
 - DRAM + battery backup with standard disk interface
 - + fast: no seek time, no rotation time, fast transfer rate
 - expensive
- FLASH memory
 - + fast: no seek time, no rotation time, fast transfer rate
 - + non-volatile
 - slow
 - "wears" out over time
- optical disks (CDs, DVDs)
 - · cheap if write-once, expensive if write-multiple
 - slow

© 2004 by Lebeck, Sorin, Roth. Hill, Wood, Sohi, Smith,

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

- Actually, reads are proportional to normal DRAM, but writes take
 - longer

Vijaykumar, Lipasti

Extensions to Conventional Disks

- increasing density: more sensitive heads, finer control
 - increases cost
- fixed head: head per track
 - + seek time eliminated
 - low track density
- · parallel transfer: simultaneous read from multiple platters
 - difficulty in looking onto different tracks on multiple surfaces
 - lower cost alternatives possible (disk arrays)

More Extensions to Conventional Disks

- disk caches: disk-controller RAM buffers data
 - + fast writes: RAM acts as a write buffer
 - + better utilization of host-to-device path
 - high miss rate increases request latency
- disk scheduling: schedule requests to reduce latency
 - e.g., schedule request with shortest seek time
 - e.g., "elevator" algorithm for seeks (head sweeps back and forth)
 - works best for unlikely cases (long queues)

COMPSCI 220 / ECE 252 Lecture Notes © 2004 by Lebeck, Sorin, Roth COMPSCI 220 / ECE 252 Lecture Notes © 2004 by Lebeck, Sorin, Roth. Storage Hierarchy III: Disks, Buses and I/O Hill, Wood, Sohi, Smith Storage Hierarchy III: Disks, Buses and I/O Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti Vijavkumar, Lipasti **University of Notre Dame University of Notre Dame** CSE 30321 – Lecture 22 – Storage and I/O CSE 30321 - Lecture 22 - Storage and I/O Bus Issues (Memory & I/O Buses) I/O System Architecture clocking: is bus clocked? buses CPU 1/0 • synchronous: clocked, short bus \Rightarrow fast memory bus asynchronous: no clock, use "handshaking" instead ⇒ slow I/O bus \$ switching: when is control of bus acquired and released? I/O processing memory bus atomic: bus held until request complete ⇒ slow program controlled • split-transaction (pipelined): bus free btwn request & reply \Rightarrow fast DMA ladapter memory DMAC I/O processors (IOPs) arbitration: how do we decide who gets the bus next? I/O bus · overlap arbitration for next master with current transfer 1/0 daisy chain: closer devices have priority ⇒ slow IOP distributed: wired-OR, low-priority back-off ⇒ medium some other issues 1/0 split data/address lines, width, burst transfer COMPSCI 220 / ECE 252 Lecture Notes © 2004 by Lebeck, Sorin, Roth, COMPSCI 220 / ECE 252 Lecture Notes © 2004 by Lebeck, Sorin, Roth, Storage Hierarchy III: Disks, Buses and I/O Hill, Wood, Sohi, Smith, Storage Hierarchy III: Disks, Buses and I/O Hill, Wood, Sohi, Smith, Vijavkumar, Lipasti Vijaykumar, Lipasti **University of Notre Dame University of Notre Dame**

I/O and Memory Buses

		bits	MHz	peak MB/s	special features
memory	Summit	128	60	960	
buses	Challenge	256	48	1200	
	XDBus	144	66	1056	
I/O	ISA	16	8	16	original PC bus
buses	IDE	16	8	16	tape, CD-ROM
	PCI	32(64)	33(66)	133(266)	"plug+play"
	SCSI/2	8/16	5/10	10/20	high-level interface
	PCMCIA	8/16	8	16	modem, "hot-swap"
	USB	serial	isoch.	1.5	power line, packetized
	FireWire	serial	isoch.	100	fast USB

• memory buses: speed (usually custom design)

• I/O buses: compatibility (usually industry standard) + cost

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

University of Notre Dame