

Lecture 23: Board Notes: Introduction to Parallel Processing

Part A:
Consider a processor that does register renaming.

- A ROB IS part of this processor.

- There IS NOT a reservation station bypass.

Therefore each instruction must spend at least 1 CC in a reservation station

- ALU operations take 1 CC to execute.

o There are an unlimited number of functional units.

- If an instruction in a RS is waiting for data produced by a previously issued instruction, it
will obtain that data during the previously issued instructionʼs WB stage – and can
execute in the next CC.

o i.e. if instruction j enters WB in cycle 7, and instruction j+4 is waiting on data from
instruction j, instruction j+4ʼs RS will be updated in cycle 7. Instruction j+4 can
execute in cycle 8

- Only 1 instruction is fetched and decoded during each clock cycle.

- Assume RS are unlimited.

- There are unlimited CDB resources. Therefore there are no structural hazard stalls

when instructions need to write back.

- 2 instructions may commit in each CC.

- Multiply instructions take 4 CCs to execute, Adds take 1 CC to execute.

Fill in the pipe trace for the instruction sequence shown on the next page.
(F) Fetch, (D) Decode, (RS) Reservation Station, (E) Execute, (W) Write Back, (C) Commit

 PART A

 Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A Add r1 ,r1, r1 F D R E W C

B Add r1, r1, r1 F D R R E W C

C Mul r1, r1, r1 F D R R R E E E E W C

D Sub r2, r2, r2 F D R E W C C C C C

E Add r1, r2, r2 F D R R E W C C C C

F Mul r2, r3, r3 F D R E E E E W C

G Add r1, r1, r1 F D R R E W C C C

Part B: Example 1:
Assume we want to split up a problem to run on 1024 processors instead of 1. However, only half of
the code is parallelizable. What speedup would we see from going from 1 processor to 1024?

€

speedupoverall =
1

(1−Fparallel)+
Fparallel

Speedupparallel

=
1

(1−0.5)+ 0.5
1024

= 1.998!

If the fraction of code that is parallelizable increases from 0.5 to 0.99, speedup is still only 1024!

Part B: Example 2:
Assume that we have a given workload that involves:

- Sum of 10 scalars
- 10 x 10 matrix sum

Part A:
What is the speedup if we increase the number of processors dedicated to the problem to 10? To 100?
1 Processor:

Time = (10 + 100) x tadd = 110 x tadd
- 10 scalar adds + 100 adds for each element in the matrix

10 Processors:
Time = 10 x tadd + (100/10) x tadd = 20 x tadd
Speedup = 110 x tadd / 20 x tadd = 5.5
 (best uniprocessor) = 55 % of the potential (5.5 / 10)

100 Processors:
Time = 10 x tadd + (100/100) x tadd = 11 x tadd
Speedup = 110 x tadd / 11 x tadd = 10
 (best uniprocessor) = 10 % of the potential
 (10 / 100)

This assumed that the load can be balanced across processors

Part B:
What is the speedup if the matrix size is now 100 x 100?
1 Processor:

Time = (10 + 10000) x tadd = 10010 x tadd
- 10 scalar adds + 10000 adds for each element in the matrix

10 Processors:
Time = 10 x tadd + (10000/10) x tadd = 1010 x tadd
Speedup = 10010 x tadd / 1010 x tadd = 9.9
 (best uniprocessor) = 99 % of the potential (9.9 / 10)

100 Processors:
Time = 10 x tadd + (10000/100) x tadd = 110 x tadd
Speedup = 10010 x tadd / 110 x tadd = 91
 (best uniprocessor) = 91 % of the potential
 (91 / 100)

This assumes load balancing is possible; if problem is smaller, scalar parts dominates (not parallel)
ust halt to replace???

