Lecture 23: Board Notes: Introduction to Parallel Processing

Part A:

Consider a processor that does register renaming.

- A ROB IS part of this processor.
- There IS NOT a reservation station bypass.

Therefore each instruction must spend at least 1 CC in a reservation station

- ALU operations take 1 CC to execute.
- There are an unlimited number of functional units.
- If an instruction in a RS is waiting for data produced by a previously issued instruction, it will obtain that data during the previously issued instruction's WB stage - and can execute in the next CC.
- i.e. if instruction j enters WB in cycle 7, and instruction $j+4$ is waiting on data from instruction j, instruction $j+4$'s RS will be updated in cycle 7 . Instruction $j+4$ can execute in cycle 8
- Only 1 instruction is fetched and decoded during each clock cycle.
- Assume RS are unlimited.
- There are unlimited CDB resources. Therefore there are no structural hazard stalls when instructions need to write back.
- 2 instructions may commit in each CC.
- Multiply instructions take 4 CCs to execute, Adds take 1 CC to execute.

Fill in the pipe trace for the instruction sequence shown on the next page.
(F) Fetch, (D) Decode, (RS) Reservation Station, (E) Execute, (W) Write Back, (C) Commit

	PART A																		
	Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A	Add r1, r1, r1	F	D	R	E	W	C												
B	Add r1, r1, r1		F	D	R	R	E	W	C										
C	Mul r1, r1, r1			F	D	R	R	R	E	E	E	E	W	C					
D	Sub r2, r2, r2				F	D	R	E	W	C	C	C	C	C					
E	Add r1, r2, r2					F	D	R	R	E	w	C	C	C	C				
F	Mul r2, r3, r3						F	D	R	E	E	E	E	W	C				
G	Add r1, r1, r1							F	D	R	R	E	W	C	C	C			

Part B: Example 1:

Assume we want to split up a problem to run on 1024 processors instead of 1. However, only half of the code is parallelizable. What speedup would we see from going from 1 processor to 1024 ?

$$
\text { speedup }_{\text {overall }}=\frac{1}{\left(1-F_{\text {parallel }}\right)+\frac{F_{\text {parallel }}}{\text { Speedup }} \text { parallel }}=\frac{1}{(1-0.5)+\frac{0.5}{1024}}=1.998 \text { ! }
$$

If the fraction of code that is parallelizable increases from 0.5 to 0.99 , speedup is still only 1024 !

Part B: Example 2:

Assume that we have a given workload that involves:

- Sum of 10 scalars
- 10×10 matrix sum

Part A:

What is the speedup if we increase the number of processors dedicated to the problem to 10 ? To $100 ?$
1 Processor:
Time $=(10+100) \quad x \quad t_{\text {add }} \quad=110 \times t_{\text {add }}$

- 10 scalar adds + 100 adds for each element in the matrix

10 Processors:
Time $=10 \times t_{\text {add }}+(100 / 10) \times t_{\text {add }}=20 \times t_{\text {add }}$
Speedup $=110 \times \mathrm{t}_{\text {add }} / 20 \times \mathrm{t}_{\text {add }}$ ada $=5.5$
100 Processors:

Time	$=$	$10 \times \mathrm{t}_{\text {add }}$	+	(100/100) $\mathrm{x}_{\text {tadd }}$	$=$	$11 \times \mathrm{tada}$
Speedup		$110 \times \mathrm{t}_{\text {add }}$	1	$11 \times \mathrm{t}_{\text {add }}$	$=$	
		(best uniprocessor)				10 \%

This assumed that the load can be balanced across processors
Part B:
What is the speedup if the matrix size is now $100 \times 100 ?$
1 Processor:
Time $=(10+10000) \times t_{\text {add }} \quad=10010 \times t_{\text {add }}$

- 10 scalar adds + 10000 adds for each element in the matrix

10 Processors:
Time $=10 \times t_{\text {add }}+(10000 / 10) \times \mathrm{t}_{\text {add }}=1010 \times \mathrm{t}_{\text {add }}$
Speedup $=10010 \times \mathrm{t}_{\text {add }} / 1010 \times \mathrm{t}_{\text {add }}$. $\quad=9.9$

This assumes load balancing is possible; if problem is smaller, scalar parts dominates (not parallel) ust halt to replace???

