Lecture 23: Board Notes: Introduction to Parallel Processing

Part A:
Consider a processor that does register renaming.

A ROB IS part of this processor.

There IS NOT a reservation station bypass.
Therefore each instruction must spend at least 1 CC in a reservation station

ALU operations take 1 CC to execute.
o There are an unlimited number of functional units.

If an instruction in a RS is waiting for data produced by a previously issued instruction, it
will obtain that data during the previously issued instruction’s WB stage — and can
execute in the next CC.

o i.e. if instruction j enters WB in cycle 7, and instruction j+4 is waiting on data from
instruction j, instruction j+4’s RS will be updated in cycle 7. Instruction j+4 can
execute in cycle 8

Only 1 instruction is fetched and decoded during each clock cycle.
Assume RS are unlimited.

There are unlimited CDB resources. Therefore there are no structural hazard stalls
when instructions need to write back.

2 instructions may commit in each CC.

Multiply instructions take 4 CCs to execute, Adds take 1 CC to execute.

Fill in the pipe trace for the instruction sequence shown on the next page.
(F) Fetch, (D) Decode, (RS) Reservation Station, (E) Execute, (W) Write Back, (C) Commit

PART A

Instruction 1 2 3 4 5 6 7 8 9 10 | 11 12 [13 [14 | 15 | 16 | 17 | 18

A Addri,r1, r1 F D R E w Cc

B Addri, r1, r1 F D R R E w C

C Mulri, ri, r1 F D R R R E E E E w Cc

D Sub r2, r2, r2 F D R E w C C C Cc Cc

E Add r1,r2, r2 F D R R E w C Cc Cc Cc

F Mul r2, r3, r3 F D R E E E E w Cc

G Addri, r1, r1 F D R R E w Cc Cc Cc

Part B: Example 1:
Assume we want to split up a problem to run on 1024 processors instead of 1. However, only half of
the code is parallelizable. What speedup would we see from going from 1 processor to 10247

speedup, e = 1 F = 1 05 = 1.998!
(1 - F parallel) + paralel (1 - 05) + .
Sp eedup parallel 1024

If the fraction of code that is parallelizable increases from 0.5 to 0.99, speedup is still only 1024!

Part B: Example 2:

Assume that we have a given workload that involves:
- Sum of 10 scalars
- 10 x 10 matrix sum

Part A:
What is the speedup if we increase the number of processors dedicated to the problem to 10? To 1007

1 Processor:

Time = (1 0+ 100) X tadd = 110 X taqq
- 10 scalar adds + 100 adds for each element in the matrix
10 Processors:
Time = 10 x tadd + (1 00/1 0) X tadd = 20 x tadd
Speedup = 110 X taqq / 20 X taqd = 5.5

(best uniprocessor)

%55 %f o?f the potential
100 Processors:

Time = 10 x tadd + (1 00/1 00) X tadd = 11 x tadd
Speedup = 110 X tagq / 11 X taqq = 10
(best uniprocessor) = 10 % of the potential
(10/100)
This assumed that the load can be balanced across processors
Part B:
What is the speedup if the matrix size is now 100 x 100?
1 Processor:
Time = (10 + 10000) x tadd = 10010 X taqgq
- 10 scalar adds + 10000 adds for each element in the matrix
10 Processors:
Time = 10 x tadd + (1 0000/1 0) X tadd = 1010 x tadd
Speedup = 10010 X tagq / 1010 X taqq = 9.9

%% %f o?f the potential

(best uniprocessor)
100 Processors:

Time = 10 x tadd + (1 0000/1 00) X tadd = 110 x tadd
Speedup = 10010 X taqq / 110 X tagq = 91
(best uniprocessor) = 91 % of the potential
(91/100)

This assumes load balancing is possible; if problem is smaller, scalar parts dominates (not parallel)
ust halt to replace???

