
University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 1!

Lecture 23 "
Introduction to Parallel Processing!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Suggested Readings!
•! Readings!

–! H&P: Chapter 7!

•! (Over next 2 weeks)!

2!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the

right application!

Writing more !

efficient code!

Multicore processors

and programming!

CSE 30321!

Goal: Explain and articulate why modern

microprocessors now have more than

one core and how software must adapt to
accommodate the now prevalent multi-

core approach to computing. "

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 4!

Introduction and Overview!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 6!

Pipelining and “Parallelism”!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

A
L

U
!

Reg!Mem! DM! Reg!

Time!

A
L

U
!

Reg!Mem! DM! Reg!

Load!

Instruction 1!

Instruction 2!

Instruction 3!

Instruction 4!

Instructions execution overlaps (psuedo-parallel)"
but instructions in program issued sequentially."

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Multiprocessing (Parallel) Machines!
•! Flynn#s Taxonomy of Parallel Machines!

–! How many Instruction streams?!

–! How many Data streams?!

•! SISD: Single I Stream, Single D Stream!

–! A uni-processor!

–! Could have psuedo-parallel execution here!

–! Example: Intel Pentium 4!

•! SIMD: Single I, Multiple D Streams!

–! Each “processor” works on its own data!

–! But all execute the same instructions in lockstep!

–! Example: SSE instructions in Intel x86!

•! (e.g. for vector addition in graphics processing) !

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Flynn#s Taxonomy!
•! MISD: Multiple I, Single D Stream!

–! Not used much, no example today!

•! MIMD: Multiple I, Multiple D Streams!

–! Each processor executes its own instructions and

operates on its own data!

–! Pre multi-core, typical off-the-shelf multiprocessor"

(made using a bunch of “normal” processors)!

•! Not superscalar!

•! Each node is superscalar!

•! Lessons will apply to multi-core too!!

–!Example: Intel Xeon e5345!

What#s superscalar?!

lw r2, 0(R1) !# page fault!

add r3, r2, r2 !# waits!

sub r6, r7, r8 !# starts!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

In Pictures:!

•! Uni:!

•! Pipelined!

•! Superscalar!

•! VLIW/”EPIC”!

•! Centralized Shared Memory!

•! Distributed Shared Memory!

P M

M

M

M

P

M

P

P M

P M

N

E

T SISD!

MIMD!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 10!

Digression:"
More on SIMD (Superscalar)!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

What#s Superscalar?!

11!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

What#s Superscalar?!

12!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

How Superscalar Machines Work!

13!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

How Superscalar Machines Work!

14!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Superscalar Introduces New Hazards!
•! With WAW hazard, instruction j tries to write an operand

before instruction i writes it.!

•! The writes are performed in wrong order leaving the
value written by earlier instruction!

•! Graphically/Example:!

… j! i! …

Instruction j is a"

write instruction"
issued after i"

Instruction i is a"

write instruction"
issued before j!

i: DIV F1, F2, F3"
j: SUB F1, F4, F6"

Problem: If j after i, and j finishes

first, and then i writes to F1, the

wrong value is in F1.!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Superscalar Introduces New Hazards!
•! With WAR hazard, instruction j tries to write an operand

before instruction i reads it.!

•! Instruction i would incorrectly receive newer value of its

operand; !

–! Instead of getting old value, it could receive some newer,

undesired value:!

•! Graphically/Example:!

… j! i! …

Instruction j is a"

write instruction"
issued after i"

Instruction i is a"

read instruction"
issued before j!

i: DIV F7, F1, F3"
j: SUB F1, F4, F6"

Problem: what if instruction j

completes before instruction i

reads F1?!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Solution: Register Renaming!

17!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Board Example: Superscalar Trace!

18!

Part A!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 19!

MIMD Machine Types!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

This brings us to MIMD

configurations…!

Processors can be any of these configurations!

What#s Next?!

•! Uni:!

•! Pipelined!

•! Superscalar!

•! Centralized Shared Memory!

•! Distributed Shared Memory!

P M

M

M

P

M

P

P M

P M

N

E

T SISD!

MIMD!

*

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Multiprocessors!
•! Why did/do we need multiprocessors?!

–! Uni-processor speed improved fast!

–! But there are problems that needed even more speed!

•! Before: Wait for a few years for Moore#s law to catch up?!

–! Or use multiple processors and do it sooner?!

•! Now: Moore#s Law still catching up.!

•! Multiprocessor software problem!

–! Most code is sequential (for uni-processors)!

•! MUCH easier to write and debug!

–! Correct parallel code very, very difficult to write!

•! Efficient and correct is much more difficult!

•! Debugging even more difficult !

Let#s look at example MIMD configurations…!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Multiprocessor Memory Types!
•! Shared Memory:!

–! In this model, there is one (large) common shared

memory for all processors!

•! Distributed memory:!

–! In this model, each processor has its own (small) local

memory, and its content is not replicated anywhere else!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

MIMD Multiprocessors!

Centralized!

Shared!

Memory!

Note: just 1 memory"

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

MIMD Multiprocessors!

Distributed Memory!

Multiple, distributed memories here."

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

More on Centralized-Memory Machines!
•! “Uniform Memory Access” (UMA)!

–! All memory locations have similar latencies!

–! Data sharing through memory reads/writes!

–! P1 can write data to a physical address A,"

P2 can then read physical address A to get that data!

•! Problem: Memory Contention!

–! All processor share the one memory!

–! Memory bandwidth become bottlenecks!

–! Used only for smaller machines!

•! Most often 2,4, or 8 processors!

•! Up to 16-32 processors!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

More on Distributed-Memory Machines!
•! Two kinds!

–! Distributed Shared-Memory (DSM)!

•! All processors can address all memory locations!

•! Data sharing possible!

•! Also called NUMA (non-uniform memory access)!

•! Latencies of different memory locations can differ!

–! (local access faster than remote access)!

–! Message-Passing!

•! A processor can directly address only local memory!

•! To communicate with other processors, "
must explicitly send/receive messages!

•! Most accesses local, so less memory contention (can
scale to well over 1000 processors)!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Message-Passing Machines!
•! A cluster of computers!

–! Each with its own processor and memory!

–! An interconnect to pass messages between them!

–! Producer-Consumer Scenario:!

•! P1 produces data D, uses a SEND to send it to P2!

•! The network routes the message to P2!

•! P2 then calls a RECEIVE to get the message!

–! Two types of send primitives!

•! Synchronous: P1 stops until P2 confirms receipt of message!

•! Asynchronous: P1 sends its message and continues!

–! Standard libraries for message passing:"

Most common is MPI – Message Passing Interface!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Message Passing Pros and Cons!
•! Pros!

–! Simpler and cheaper hardware!

–! Explicit communication makes programmers aware of

costly (communication) operations!

•! Cons!

–! Explicit communication is painful to program!

–! Requires manual optimization!

•! If you want a variable to be local and accessible via LD/ST,
you must declare it as such!

•! If other processes need to read or write this variable, you must
explicitly code the needed sends and receives to do this!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Message Passing: A Program!
•! Calculating the sum of array elements!

#define ASIZE 1024

#define NUMPROC 4

double myArray[ASIZE/NUMPROC];

double mySum=0;

for(int i=0;i<ASIZE/NUMPROC;i++)

 mySum+=myArray[i];

if(myPID=0){

 for(int p=1;p<NUMPROC;p++){

 int pSum;

 recv(p,pSum);

 mySum+=pSum;

 }

 printf(“Sum: %lf\n”,mySum);

}else

 send(0,mySum);

Must manually split the array"

“Main” processor adds up #
partial sums and prints the result"

Other processors send their#
partial results to main"

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Shared Memory Pros and Cons!
•! Pros!

–! Communication happens automatically!

–! More natural way of programming!

•! Easier to write correct programs and gradually optimize them!

–! No need to manually distribute data "

(but can help if you do)!

•! Cons!

–! Needs more hardware support!

–! Easy to write correct, but inefficient programs"

(remote accesses look the same as local ones)!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Shared Memory: A Program!
•! Calculating the sum of array elements!

#define ASIZE 1024

#define NUMPROC 4

shared double array[ASIZE];

shared double allSum=0;

shared mutex sumLock;

double mySum=0;

for(int i=myPID*ASIZE/NUMPROC;i<(myPID+1)*ASIZE/NUMPROC;i++)

 mySum+=array[i];

lock(sumLock);

allSum+=mySum;

unlock(sumLock);

if(myPID=0)

 printf(“Sum: %lf\n”,allSum);

Array is shared"

Each processor adds its partial#

sums to the final result"

Main processor prints the result"

Each processor sums up#

“its” part of the array"

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 32!

The Challenge(s) of Parallel Computing!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Real Issues and Problems!
•! Motivation is 2 fold!

–! 50s ,60s, 70s, … today – have rooms filled with machines

working to solve a common problem !

–! Could consider multi-core chips as “DSM”!

•! i.e. 4-core chip, each core has L1 cache, share L2 cache!

•! Problems are often the same, just on different scales!

•! As technology scales, problems once seen at room

level can be found “on chip”!

33!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Speedup"
metric for performance on latency-sensitive applications!

•! Time(1) / Time(P) for P processors!

–!note: must use the best sequential algorithm for Time(1) --

the parallel algorithm may be different.!

1 2 4 8 16 32 64

1

2

4

8

1
6

3
2

6
4

processors

sp
ee

d
u

p

“linear” speedup!
(ideal)!

typical: rolls off!
w/some # of!

processors!

occasionally see!
“superlinear”... why?!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Parallel Programming!
•! Parallel software is the problem!

•! Need to get significant performance improvement!

–! Otherwise, just use a faster uniprocessor, since it#s

easier!!

•! Difficulties!

–! Partitioning!

–! Coordination!

–! Communications overhead!

Part B!
University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Challenges: Cache Coherency!
•! Shared memory easy with no caches!

–! P1 writes, P2 can read!

–! Only one copy of data exists (in memory)!

•! Caches store their own copies of the data!

–! Those copies can easily get inconsistent!

–! Classical example: adding to a sum!

•! P1 loads allSum, adds its mySum, stores new allSum!

•! P1#s cache now has dirty data, but memory not updated!

•! P2 loads allSum from memory, adds its mySum, stores allSum!

•! P2#s cache also has dirty data!

•! Eventually P1 and P2#s cached data will go to memory!

•! Regardless of write-back order, final value ends up wrong!

If moderate # of nodes, write-through not practical.!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Challenges: Contention!
•! Contention for access to shared resources - esp.

memory banks or remote elements - may dominate
overall system scalability!

–! The problem:!

•! Neither network technology nor chip memory bandwidth has

grown at the same rate as the processor execution rate or data
access demands!

–! With success of Moore#s Law:!

•! Amt. of data per memory chip is growing such that it takes an
increasing # of CCs to touch all bytes per chip at least once!

–! Imposes a fundamental bound on system scalability!

–! Is a significant contributor to single digit performance

efficiencies by many of today#s large scale apps.!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Challenges: Latency!
•! …is already a major source of performance degradation!

–! Architecture charged with hiding local latency!

•! (that#s why we talked about registers, caches, IC, etc.)!

–! Hiding global latency is task of programmer!

•! (I.e. manual resource allocation)!

•! Today:!

–! multiple clock cycles to cross chip!

–! access to DRAM in 100s of CCs!

–! round trip remote access in 1000s of CCs!

•! In spite of progress in NW technology, increases in
clock rate may cause delays to reach 1,000,000s of CCs
in worst cases!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Challenges: Reliability!
•! Reliability:!

–! Improving yield and achieving high “up time”!

•! (think about how performance might suffer if one of the 1
million nodes fails every x number of seconds or minutes…)!

–! Solve with checkpointing, other techniques!

•! Programming languages, environments, &
methodologies:!

–! Need simple semantics and syntax that can also expose
computational properties to be exploited by large-scale

architectures!

Part C!
University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Challenges: Languages!
•! Programming languages, environments, &

methodologies:!

–! Need simple semantics and syntax that can also expose

computational properties to be exploited by large-scale

architectures!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 41!

Perspective: "
The Future of Supercomputing!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Perspective: Parallel Processing &

“Supercomputing”!
•! Need more high performance supercomputing

capability!

–! FLOP History:!

•! MegaFLOPS 1970s!

•! GigaFLOPS 1980s!

•! TeraFLOPS 1990s (1994)!

•! PetaFLOPS (2010) (ish)!

–! About 3 orders of magnitude every 12 years…!

•! Next target!

–! ExaFLOPS (1018 FLOPS)!

•! Ultimate limit?!

–! ZettaFLOPS (1021 FLOPS)!

•! Can we get to 1021 FLOPS?!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

Parallel processing enables solutions to

important problems.!
•! Why zettaFLOPS?!

–! More computational capacity needed for science, national

defense, society as a whole…!

•! Good example:!

–! Climate modeling…!

•! Climate modelers want - actually should say need - 1021
FLOPS to do accurate modeling…!

•! …Ideally with a program-based model…!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

A silicon zettaflop won#t be easy."

(technology still can limit)!
•! As just mentioned, to get to a ZF, also need to consider

storage?!

•! Thus, question #1: how much is enough?!

–! Actually some debate about this…!

•! Option 1: 1 ZB for 1 ZF!

•! Option 2: 0.3 ZB / ZF!

•! Option 3:!

–! Gigabytes should equal at least sustained GF to the 3/4th power!

–! This leads to 1 EB / ZF!

–! We#ll consider all of these…!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

It#s big.!

Note: this is the BEST case…!

University of Notre Dame!

CSE 30321 – Lecture 23 – Introduction to Parallel Processing!

It#s hot.!

~200 MW

