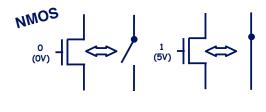

Suggested Readings

- Readings
 - H&P: Chapter 7
 - (Over next 2 weeks)

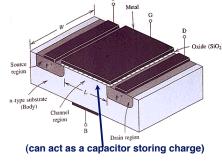
Lecture 24 Parallel Processing on Multi-Core Chips



University of Notre Dame

Transistors used to manipulate/store 1s & 0s

Switch-level representation


Cross-sectional view

YEAR

TECHNOLOGY

2004

Using above diagrams as context, note that if we (i) apply a suitable voltage to the gate & (ii) then apply a suitable voltage between source and drain, current will flow.

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

Previous Industry Projections

2010

2013

32 nm

2016

22 nm

Moore's Law

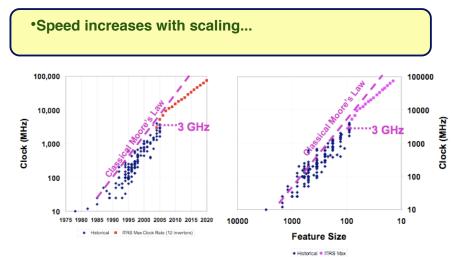
"Cramming more components onto integrated circuits."

- G.E. Moore, Electronics 1965

- Observation: DRAM transistor density doubles annually
 - Became known as "Moore's Law"
 - Actually, a bit off:
 - Density doubles every 18 months (now more like 24)
 - (in 1965 they only had 4 data points!)

- Corollaries:

- Cost per transistor halves annually (18 months)
- Power per transistor decreases with scaling
- · Speed increases with scaling
 - Of course, it depends on how small you try to make things
 - » (I.e. no exponential lasts forever)


Remember these!

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

8

A funny thing happened on the way to 45 nm

2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at 3+ GHz in production.

90 nm 65 nm 45 nm

2007

CHIP SIZE	550 mm ²				
NUMBER OF TRANSISTORS (LOGIC)	553 M	1 Billion	2 Billion	4.5 Billion	8.5 Billion
DRAM CAPACITY	1.0 Gbits	2.0 Gbits	4.3 Gbits	8.5 Gbits	35 Gbits
MAXIMUM CLOCK FREQUENCY	4.1 GHz	9.3 GHz	15 GHz	23 GHz	40 GHz
MINIMUM SUPPLY VOLTAGE	0.9 V	0.8 V	0.7 V	0.6 V	0.5 V
SUPPLY	0.9 V 150 W	0.8 V 190 W	0.7 V 200 W	0.6 V 200 W	0.5 V 200 W
SUPPLY VOLTAGE MAXIMUM POWER					

A funny thing happened on the way to 45 nm

 Power decreases with scaling... Technology 350 250 180 130 90 65 500 45 22 Node (nm) 100 **Iormalized Power** Dynamic power 0.01 0.0001 Static Power (leakage) 0.0000001 1995 2000 2005 2010 2015 2020 1990

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

Summary of relationships

- (+) If V increases, speed (performance) increases
- (-) If V increases, power (heat) increases
- (+) If L decreases, speed (performance) increases
- (?) If L decreases, power (heat) does what?
 - P could improve because of lower C
 - P could increase because >> # of devices switch
 - P could increase because >> # of devices switch faster!

Need to carefully consider tradeoffs between speed and heat

A bit on device performance...

- One way to think about switching time:
 - Charge is carried by electrons
 - Time for charge to cross channel = length/speed
- What about power (i.e. heat)?
- Thus, to make a device faster, we want to either increase V_{ds} or decrease feature sizes (i.e. L)
- <u>Dynamic</u> power is: $P_{dyn} = C_L V_{dd}^2 f_{0-1}$

• $C_L = (e_{ox}WL)/d$

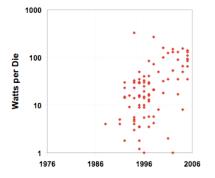
11

• = L²/(mV_{ds})

- e_{ox} = dielectric, WL = parallel plate area, d = distance between oate and substrate

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips


12

Oxide (SiO₂)

A funny thing happened on the way to 45 nm

- Speed increases with scaling...
- Power decreases with scaling...

Why the clock flattening? POWER!!!!

13

15

(Short term?) Solution

High art meets high-tech.

Lincoln's latest project, titled "CUBE," is a 10' x 10' translucent structure out with video cameras, unjouely combining sculpture, portraiture and architecture With **Intel® Centrans®** processor **technology** inside, a notebook becomes mar other things as well — portable studio, cames, inspiration tool. Top 5 Must-Haves

- Dip or vasa the RECESSOR POWERFUL RECESSOR A partrait of partermance. "My generative portraits are demanding on the processors in my lapto, as they continuously manipulate video," says Linco Thankikly, the deal-cere partbranemate of Intel Centrino processor technolo can handle intensive tasks with flying colors.
- DIZZYING TRANSFER SPEEDS Art (at 30 frames per second). Data transferring up to 20% faster allows Lincoln to store footage from 24 video cameras with lightnin
- HIGH-SPEED WIRELESS
- (HIGH-SPEED WIRELESS Always Connected. With up to twice the range and lix the speed when connected to a Wireless N home network,² Lincoln can download musi or shop for art books anywhere, anytime.
- ENHANCED VIDEO High-def (redefined). Lincoln can view his gene View clarity, thanks to stunning multimedia performance, for a super-enhance: high-def video.experience.

more and the second secon

- Processor complexity is good enough
- Transistor sizes can still scale
- Slow processors down to manage power
- Get performance from...

Parallelism

Top 5 Must-Haves

POWERFUL PROCESSOR

A portrait of performance. "My generative portraits are demanding on the processors in my laptop, as they continuously manipulate video," says Lincoln. Thankfully, the dual-core performance of Intel Centrino processor technology can handle intensive tasks with flying colors.

(i.e. 1 processor, 1 ns clock cycle VS. 2 processors, 2 ns clock cycle)

Are there design problems and issues unique to parallel processing on multi-core chips?

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

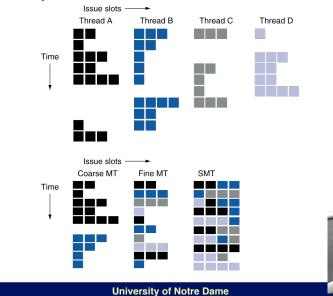
16

Issues

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

- Not that much different than those listed earlier: •
 - Cache Coherency
 - Contention
 - Latency
 - Reliability
 - Languages
 - Algorithms
- In order of priority... ٠
 - Algorithms / Languages
 - Contention / Latency
 - Cache coherency


Are there parallel processing models more suitable to chip-level systems?

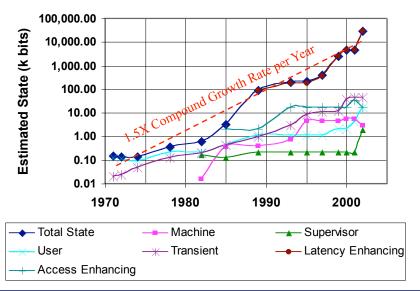
Board examples

Multithreading

- Idea:
 - Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
 - Fast switching between threads
- Flavors:
 - Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed
 - Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls (e.g., data hazards)
 - SMT (Simultaneous Multi-Threading)
 - Especially relevant for superscalar

Refer to this picture:

University of Notre Dame


CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

Impact of modern processing principles (Lots of "state")

- User:
 - state used for application execution
- Supervisor:
 - state used to manage user state
- Machine:
 - state that configures the system
- Transient:
 - state used during instruction execution
- Access-Enhancing:
 - state used to simplify translation of other state names
- Latency-Enhancing:
 - state used to reduce latency to other state values

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

Impact of modern processing principles (Total State vs. Time)

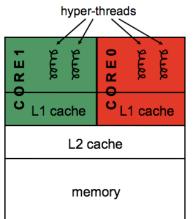
Comparison: multi-core vs SMT

- Multi-core:
 - Since there are several cores, each is smaller and not as powerful (but also easier to design and manufacture)
 - However, great with thread-level parallelism
- SMT
 - Can have one large and fast superscalar core
 - Great performance on a single thread
 - Mostly still only exploits instruction-level parallelism

The memory hierarchy

- If simultaneous multithreading only:
 - all caches shared
- Multi-core chips:
 - L1 caches private

Examples: AMD Opteron, AMD Athlon, Intel Pentium D


- L2 caches private in some architectures and shared in others
- Memory is always shared

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

Or can do both...

- Dual-core
 Intel Xeon processors
- Each core is
 hyper-threaded
- Private L1 caches
- Shared L2 caches

University of Notre Dame

CSE 30321 – Lecture 24 – Parallel Processing on Multi-Core Chips

Real life examples... Designs with private L2 caches

ш ш ш ш ۲ R 2 2 0 0 C о_{L1 cache} υ о_{L1 cache} L1 cache L1 cache L2 cache L2 cache L2 cache L2 cache L3 cache L3 cache memory memory Both L1 and L2 are private

A design with L3 caches

Example: Intel Itanium 2