
University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs! 1!

Lecture 25 "
Threads and GPUs!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Suggested Readings!
•! Readings!

–! H&P: Chapter 7 – especially 7.1-7.8!

•! (Over next 2 weeks)!

–! Introduction to Parallel Computing!

•! https://computing.llnl.gov/tutorials/parallel_comp/!

–! POSIX Threads Programming!

•! https://computing.llnl.gov/tutorials/pthreads/!

–! How GPUs Work!

•! www.cs.virginia.edu/~gfx/papers/pdfs/59_HowThingsWork.pdf!

2!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the

right application!

Writing more !

efficient code!

Multicore processors

and programming!

CSE 30321!

•! Explain & articulate why modern

microprocessors now have more than

one core and how SW must adapt. "
•! Use knowledge about underlying HW

to write more efficient software"

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Recap: L23 – Intro to Parallel Processing!
•! Types of multi-processors!

–! Room-level, on-chip!

•! Types of machines!

–! SISD (uniprocessor, pipelined, superscalar)!

–! SIMD (more today)!

–! MISD (not really used)!

–! MIMD (centralized & distributed shared memory)!

•! More detail about MIMD!

•! How parallelization impacts performance!

•! What can impede performance of parallel machines?!

–! Coherency, latency, contention, reliability, languages,

algorithms!

4!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Recap: L24 – Parallel Processing on MC!
•! Simple quantitative examples on how (i) reliability, (ii)

communication overhead, and (iii) load balancing
impact performance of parallel systems!

•! Technology drive to multi-core computing!

5!

Why the clock flattening? POWER!!!!!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Today: L25 – Threads and GPUs!
•! All issues covered in L23 & L24 apply to “on-chip”

computing systems as well as “room level” computing
systems!

•! That said, 2 models that lend themselves well to on-chip
parallelism deserve special discussion:!

–! Threads!

–! GPU-based computing!

6!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Threads First!
•! Outline of Threads discussion:!

–! What#s a thread?!

•! How many people have heard of / used threads before?!

–! Coupling to architecture!

–! Example: scheduling threads!

•! Assume different architectural models!

–! Programming models!

–! Why intimate knowledge about HW is important!

7!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Processes vs. Threads!
•! Process!

–! Created by OS!

–! Much “overhead”!

•! Process ID!

•! Process group ID!

•! User ID!

•! Working directory!

•! Program instructions!

•! Registers!

•! Stack space!

•! Heap!

•! File descriptors!

•! Shared libraries!

•! Shared memory!

•! Semaphores, pipes, etc.!

•! Thread!

–! Can exist within process!

–! Shares process

resources!

–! Duplicate bare

essentials to execute

code on chip!

•! Program counter!

•! Stack pointer!

•! Registers!

•! Scheduling priority!

•! Set of pending, blocked

signals!

•! Thread specific data!

8!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Processes vs. Threads!

9!

Parts A,B!
University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Multi-threading!
•! Idea:!

–! Performing multiple threads of execution in parallel!

•! Replicate registers, PC, etc.!

–! Fast switching between threads!

•! Flavors:!

–! Fine-grain multithreading!

•! Switch threads after each cycle!

•! Interleave instruction execution!

•! If one thread stalls, others are executed!

–! Coarse-grain multithreading!

•! Only switch on long stall (e.g., L2-cache miss)!

•! Simplifies hardware, but doesn#t hide short stalls!

–! (e.g., data hazards)!

–! SMT (Simultaneous Multi-Threading)!

•! Especially relevant for superscalar!

Parts C—F!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Coarse MT vs. Fine MT vs. SMT!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Mixed Models:!
•! Threaded systems and multi-threaded programs are

not specific to multi-core chips.!

–! In other words, could imagine a multi-threaded uni-

processor too…!

•! However, could have an N-core chip where:!

–! … N threads of a single process are run on N cores!

–! … N processes run on N cores – and each core splits

time between M threads!

12!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Or can do both…!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Real life examples…!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Writing threaded programs for

supporting HW!

16!

Part G!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Impact of modern processing principles "

(Lots of “state”)!
•! User: !

–! state used for application execution!

•! Supervisor: !

–! state used to manage user state!

•! Machine: !

–! state that configures the system!

•! Transient: !

–! state used during instruction execution!

•! Access-Enhancing: !

–! state used to simplify translation of other state names!

•! Latency-Enhancing: !

–! state used to reduce latency to other state values!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

E
s
ti

m
a
te

d
 S

ta
te

 (
k
 b

it
s
)

Total State Machine Supervisor

User Transient Latency Enhancing

Access Enhancing

Impact of modern processing principles "
(Total State vs. Time)!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

GPU discussion points!
•! Motivation for GPUs:!

•! Necessary processing!

•! Example problem:!

–! Generic CPU pipeline!

–! GPU-based vs. Uni-processor Z-buffer problem!

•! What does a GPU architecture look like?!

–! Explain in context of SIMD!

•! Applicability to other computing problems!

19!

Part H!
University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

How is a frame rendered?!
•! Helpful to consider how the 2 standard graphics

APIs – OpenGL and Direct 3D – work.!

–! These APIs define a logical graphics pipeline that is

mapped onto GPU hardware and processors – along with

programming models and languages for the

programmable stages!

–! In other words, API takes primitives like points, lines and

polygons, and converts them into pixels!

•! How does the graphics pipeline do this?!

–! First, important to note that “pipeline” does not mean the
5 stage pipeline we talked about earlier !

–! Pipeline describes sequence of steps to prepare image/

scene for rendering!

20!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

How is a frame rendered? "

(Direct3D pipeline)!

21!

Parts I—J!
University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Example: Textures!

22!

http://en.wikipedia.org/wiki/File:Texturedm1a2.png

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Example: Z-buffer!

23!

http://blog.yoz.sk/examples/pixelBenderDisplacement/zbuffer1Map.jpg

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

GPUs!
•! GPU = Graphics Processing Unit!

–! Efficient at manipulating computer graphics!

–! Graphics accelerator uses custom HW that makes

mathematical operations for graphics operations fast/

efficient!

•! Why SIMD? Do same thing to each pixel!

•! API language compilers target industry standard
intermediate languages instead of machine

instructions!

–! GPU driver software generates optimized GPU-specific

machine instructions!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

GPUs!
•! Also, SW support for GPU programming:!

–! NVIDIA has graphics cards that support API extension to

C – CUDA (“Computer Unified Device Architecture”)!

•! Allows specialized functions from a normal C program to run
on GPU#s stream processors!

•! Allows C programs that can benefit from integrated GPU(s) to
use where appropriate, but also leverage conventional CPU!

25!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

Modern GPU!
•! Often part of a heterogeneous system!

–! GPUs don#t do all things CPU does!

–! Good at some specific things!

•! i.e. matrix-vector operations!

•! GPU HW:!

–! No multi-level caches!

–! Hide memory latency with threads!

•! To process all pixel data!

–! GPU main memory oriented toward bandwidth!

26!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

GPUs for other problems!
•! More recently: !

–! GPUs found to be more efficient than general purpose

CPUs for many complex algorithms!

•! Often things with massive amount of vector ops!

–! Example:!

•! ATI, NVIDIA team with Stanford to do GPU-based computation
for protein folding!

•! Found to offer up to 40 X improvement over more
conventional approach!

27!

University of Notre Dame!

CSE 30321 – Lecture 25 – Threads and GPUs!

GPU Example!

