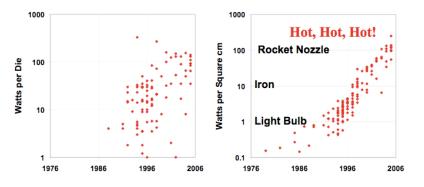
Suggested Readings

Readings

- H&P: Chapter 7 especially 7.1-7.8
 - (Over next 2 weeks)
- Introduction to Parallel Computing
 - <u>https://computing.llnl.gov/tutorials/parallel_comp/</u>
- POSIX Threads Programming
 - <u>https://computing.llnl.gov/tutorials/pthreads/</u>
- How GPUs Work
 - <u>www.cs.virginia.edu/~gfx/papers/pdfs/59 HowThingsWork.pdf</u>


	University of Notre Dame		University of Notre Dame		
C	SE 30321 – Lecture 25 – Threads and	d GPUs 3	CSE 30321 – Lecture 25 – Threads and GPUs 4		
Multicore processors and programmingImage: state of the st	Processor components	Processor comparison $\textbf{First for } \textbf{vs.} \qquad \textbf{for } i=0; i<5; i++ \{ a = (a*b) + c; \} \\ \textbf{for } j \neq \textbf{for } i=0; i<5; i++ \{ a = (a*b) + c; \} \\ \textbf{for } j \neq \textbf{for } i=0; i<1; i++ \{ a = (a*b) + c; \} \\ \textbf{for } j \neq \textbf{for } i=0; j < 1; j$	 Provide a state of the state of th		
	University of Notre Dame		University of Notre Dame		

Lecture 25 Threads and GPUs

Recap: L24 – Parallel Processing on MC

- Simple quantitative examples on how (i) reliability, (ii) communication overhead, and (iii) load balancing impact performance of parallel systems
- Technology drive to multi-core computing

Why the clock flattening? POWER!!!!

University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

Threads First

- Outline of Threads discussion:
 - What's a thread?
 - How many people have heard of / used threads before?
 - Coupling to architecture
 - Example: scheduling threads
 - Assume different architectural models
 - Programming models
 - Why intimate knowledge about HW is important

Today: L25 – Threads and GPUs

- All issues covered in L23 & L24 apply to "on-chip" computing systems as well as "room level" computing systems
- That said, 2 models that lend themselves well to on-chip parallelism deserve special discussion:
 - Threads
 - GPU-based computing

University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

Processes vs. Threads

Thread

- Can exist within process

essentials to execute

• Program counter

Scheduling priority

Thread specific data

· Set of pending, blocked

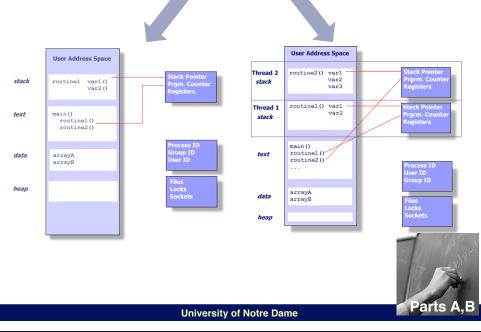
Stack pointer

Shares process

Duplicate bare

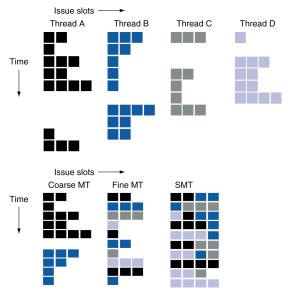
code on chip

Registers


signals

resources

- Process
 - Created by OS
 - Much "overhead"
 - Process ID
 - Process group ID
 - User ID
 - Working directory
 - Program instructions
 - Registers
 - Stack space
 - Heap
 - File descriptors
 - Shared libraries
 - Shared memory
 - Semaphores, pipes, etc.


5

Processes vs. Threads

CSE 30321 – Lecture 25 – Threads and GPUs

Coarse MT vs. Fine MT vs. SMT

-- --- --

Multi-threading

• Idea:

- Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
- Fast switching between threads
- Flavors:
 - Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - · If one thread stalls, others are executed

- Coarse-grain multithreading

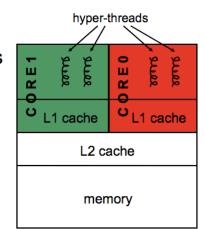
- Only switch on long stall (e.g., L2-cache miss)
- Simplifies hardware, but doesn't hide short stalls
 (e.g., data hazards)
- SMT (Simultaneous Multi-Threading)
 - Especially relevant for superscalar

University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

Mixed Models:

- Threaded systems and multi-threaded programs are not specific to multi-core chips.
 - In other words, could imagine a multi-threaded uniprocessor too...
- However, could have an N-core chip where:
 - ... N threads of a single process are run on N cores
 - ... N processes run on N cores and each core splits time between M threads

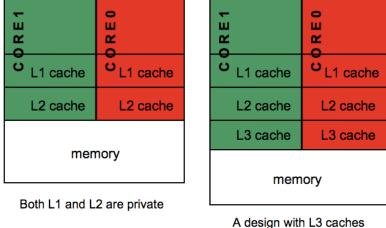


Or can do both...

Comparison: multi-core vs SMT

- Multi-core:
 - Since there are several cores, each is smaller and not as powerful (but also easier to design and manufacture)
 - However, great with thread-level parallelism
- SMT
 - Can have one large and fast superscalar core
 - Great performance on a single thread
 - Mostly still only exploits instruction-level parallelism

- Dual-core
 Intel Xeon processors
- Each core is hyper-threaded
- Private L1 caches
- · Shared L2 caches


University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

CSE 30321 – Lecture 25 – Threads and GPUs Real life examples...

University of Notre Dame

Designs with private L2 caches

Examples: AMD Opteron, AMD Athlon, Intel Pentium D A design with L3 caches

Example: Intel Itanium 2

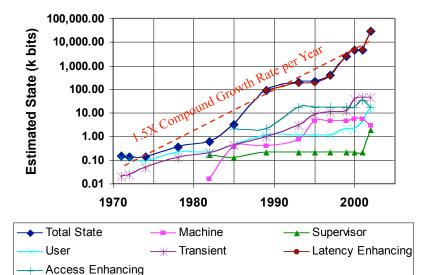
Writing threaded programs for supporting HW

Impact of modern processing principles (Lots of "state")

- User:
 - state used for application execution
- Supervisor:
 - state used to manage user state
- Machine:
 - state that configures the system
- Transient:
 - state used during instruction execution
- Access-Enhancing:
 - state used to simplify translation of other state names
- Latency-Enhancing:
 - state used to reduce latency to other state values

University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

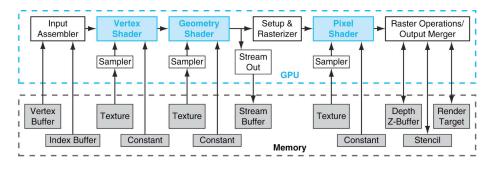

GPU discussion points

- Motivation for GPUs:
- Necessary processing
- Example problem:
 - Generic CPU pipeline
 - GPU-based vs. Uni-processor Z-buffer problem
- What does a GPU architecture look like?
 - Explain in context of SIMD
- Applicability to other computing problems

19

Impact of modern processing principles (Total State vs. Time)

University of Notre Dame

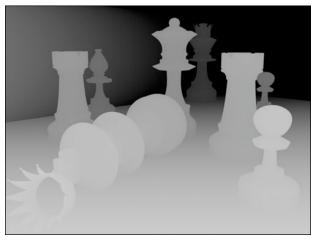

CSE 30321 – Lecture 25 – Threads and GPUs

20

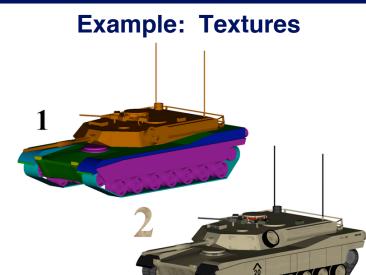
How is a frame rendered?

- Helpful to consider how the 2 standard graphics APIs – OpenGL and Direct 3D – work.
 - These APIs define a logical graphics pipeline that is mapped onto GPU hardware and processors – along with programming models and languages for the programmable stages
 - In other words, API takes primitives like points, lines and polygons, and converts them into pixels
- How does the graphics pipeline do this?
 - First, important to note that "pipeline" does not mean the 5 stage pipeline we talked about earlier
 - Pipeline describes sequence of steps to prepare image/ scene for rendering

How is a frame rendered? (Direct3D pipeline)



23


University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

Example: Z-buffer

http://blog.yoz.sk/examples/pixelBenderDisplacement/zbuffer1Map.jpg

http://en.wikipedia.org/wiki/File:Texturedm1a2.png

University of Notre Dame

CSE 30321 – Lecture 25 – Threads and GPUs

GPUs

- GPU = <u>Graphics Processing Unit</u>
 - Efficient at manipulating computer graphics
 - Graphics accelerator uses custom HW that makes mathematical operations for graphics operations fast/ efficient
 - Why SIMD? Do same thing to each pixel
- API language compilers target industry standard intermediate languages instead of machine instructions
 - GPU driver software generates optimized GPU-specific machine instructions

GPUs

- Also, SW support for GPU programming:
 - NVIDIA has graphics cards that support API extension to C – CUDA ("Computer Unified Device Architecture")
 - Allows specialized functions from a normal C program to run on GPU's stream processors
 - Allows C programs that can benefit from integrated GPU(s) to use where appropriate, but also leverage conventional CPU

Modern GPU

- Often part of a *heterogeneous* system
 - GPUs don't do all things CPU does
 - Good at some specific things
 - i.e. matrix-vector operations
- GPU HW:

25

- No multi-level caches
- Hide memory latency with threads
 - To process all pixel data
- GPU main memory oriented toward bandwidth

University of Notre Dame	University of Notre Dame CSE 30321 – Lecture 25 – Threads and GPUs GPU Example		
CSE 30321 – Lecture 25 – Threads and GPUs 27			
GPUs for other problems			
More recently:			
 GPUs found to be more efficient than general purpose CPUs for many complex algorithms Often things with massive amount of vector ops 	Power Efficient Supercomputing William Daily Bell Professor of Engineering, Stanford University Chief Scientist and Sr. VP of Research, NVIDIA	High-Performance Computing is Power Limited • What can be put on a chip is limited by power, not area. • Cost of energy to run a cluster equals purchase cost in less than 18 months. • Cost of provisioning a machine room with adequate power is typically many times cost of cluster. • What matters now is <i>i</i> /FLOP	GPU Computing • GPUs are already much of the way to being efficient supercomputer nodes – Simple control – Explicit control of targe herarchy – Large fraction of energy pases to FLOPs – Kurte GPUs will close the gap – More efficient instruction and data supply – Agle memoy – Seamless integration into larger machines • 5GFLOPS/W and beyond – soon
 Example: • ATI, NVIDIA team with Stanford to do GPU-based computation for protein folding 			
 Found to offer up to 40 X improvement over more conventional approach 	High performance computing is <i>power limited</i> .	Power-Efficient Supercomputing: Goal 200pJ/FLOP (5GFLOPS/W) sustained 25% of energy in FPU	