

Lecture 26: Board Notes: Parallel Programming Examples

Part A:
Consider the following binary search algorithm (a classic divide and conquer algorithm) that searches
for a value X in a sorted N-element array A and returns the index of the matched entry:

 BinarySearch(A[0 … N-1], X) {
 low = 0
 high = N-1

 while(low <= high) {
 mid = (low + high) / 2
 if (A[mid] > X)
 high = mid – 1
 else if (A[mid] < X)
 low = mid + 1
 else
 return mid // we’ve found the value
 }

 return -1 // value is not found
 }

Question 1:

- Assume that you have Y cores on a multi-core processor to run BinarySearch
- Assuming that Y is much smaller than N, express the speed-up factor you might expect to

obtain for values of Y and N.

Answer:

- A binary search actually has very good serial performance and it is difficult to parallelize without
modifying the code

- Increasing Y beyond 2 or 3 would have no benefits
- At best we could…

o On core 1: perform the comparison between low and high
o On core 2: perform the computation for mid
o On core 3: perform the comparison for A[mid]

- Without additional restructuring, no speedup would occur
o …and communication between cores is not “free”

Compare

low
 Calculate

mid
 Compare

high
Core 1 Core 2 Core 1

 Compare
A[mid]

 Core 3

We are always throwing half of the array away!

Question 2:

- Now, assume that Y is equal to N
- How would this affect your answer to Question 1?
- If you were tasked with obtaining the best speed-up factor possible, how would you change this

code?

Answer:

- This question suggest that the number of cores can be made equal to the number of array
elements

- With current code, this will do no good
- Alternative approach is to:

o Create threads to compare the N elements to the value X and perform these in parallel
o Then, we can get ideal speed-up (Y)
o Entire comparison can be completed in the amount of time to perform a single

computation
- Probably not a great idea to design a processor architecture for just this problem

o Especially as a binary search should take just log2N operations anyhow

Part B:
(Adapted from https://computing.llnl.gov/tutorials/parallel_comp/)

Note – this example deals with the fact that most problems in parallel computing will involve
communication among different tasks

Consider how one might solve a simple heat equation:

- The heat equation describes the temperature change over time given some initial temperature
distribution and boundary conditions

- As shown in the picture below, a finite differencing method is employed to solve the heat
equation numerically

The serial algorithm would look like:

for iy = 2:(ny – 1)
 for ix = 2:(nx – 1)
 u2(ix, iy) = u1(ix, iy) +

 cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy)) +
 cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy))

Question:

- Assuming we have 4 cores to use on this problem, how would we go about writing parallel
code?

Answer:

- We would need to partition and distribute array elements
such that they could be processed by different cores

- Given the partitioning shown at right…
o Interior elements are independent of work being

done on other cores
o Border elements do dependent on working being

done on other cores – and we must set up a
communication protocol

- Might have a MASTER process that sends information to
workers, checks for convergence, and collects results

o WORKER process calculates solution

Part C:
Consider the following piece of C-code:

 for(j=2; j<=1000; j++)
 D[j] = D[j-1] + D[j-2];

The assembly code corresponding to the above fragment is as follows:

 addi r2, r2, 1000
 Loop: lw r1, -16(rX)
 lw r2, -8(rX)
 add r3, r1, r2
 sw r3, 0(rX)
 addi r1, r1, 8
 bne r1, r2, Loop

Assume that the above instructions have the following latencies (in CCs)

 addi: 1 CC
 lw: 5 CCs
 add: 3 CCs
 sw: 1 CC
 bne: 3 CCs

Question 1:
How many cycles does it take for all instructions in a single iteration of the above loop to execute?

Answer:

- The first instruction is executed 1 time
- The loop body is executed 998 times

Instruction Number of times run Number of cycles Total cycles
addi 1 1 1
lw 999 5 4995
lw 999 5 4995
add 999 3 2997
sw 999 1 999
addi 999 1 999
bne 999 3 2997
 17983

This is our baseline … now, letʼs see if we can do better.

Question 2:
When an instruction in a later iteration of a loop depends on a value in an earlier iteration of the same
loop, we say there is a loop-carried dependence between iterations of the loop.

- Identify the loop-carried dependencies in the above code
- Identify the dependent program variable and assembly-level registers

o (Ignore the loop counter j)

Answer:

- Array elements D[j] and D[j-1] will have loop carried dependencies
- These affect r3 in the current iteration and r4 in the next iteration

Question 3:
In previous assignments, you used looped unrolling to reduce the execution time of a loop.

- Apply loop unrolling to this loop
- Then, consider running this code on a 2-node distributed memory message-passing system
- Assume that we are going to use message passing and will introduce 2 new operations:

o send (x,y) – which sends the value y to node x
o receive (x,y) – which waits for the value being sent to it

- Assume that:
o send takes 3 cycles to issue
o receive instructions stall execution on the node where they are executed until they

receive a message
 Once executed, receives also take 3 cycles to process

Given the code below, compute the number of cycles it will take for the loop to run on the message
passing system:

- Note: the loop is unrolled 4 times

Loop running on node 1:

 addi r2, r0, 992 1
 lw r1, -16(rX) 2, 3, 4, 5, 6
 lw r1, -8(rX) 7, 8, 9, 10, 11
loop add r3, r2, r1 12, 13, 14 65, 66, 67
 add r4, r3, r2 15, 16, 17 68, 69, 70
 send (2, r3) 18, 19, 20 71, 72, 73
 send (2, r4) 21, 22, 23 74, 75, 76
 sw r3, 0(rX) 24 77
 sw r4, 0(rX) 25 78
 receive (r5) 33, 34, 35 86, 87, 88
 add r6, r5, r4 36, 37, 38 89, 90, 91
 add r1, r6, r5 39, 40, 41 92, 93, 94
 send (2, r6) 42, 43, 44 95, 96, 97
 send (2, r1) 45, 46, 47 98, 99, 100
 sw r5, 16(rX) 48 101
 sw r6, 24(rX) 49 102
 sw r1, 32(rX) 50 103
 receive (r2) 57, 58, 59 116, 117, 118
 sw r2, 40(rX) 60 119
 addi rX, RX, 48 61 120
 bne rX, r2, loop 62, 63, 64 121, 122, 123
 clean up cases outside loops Assume ~ 20 cycles total

Loop running on node 2:

 addi r3, r0, 0 in parallel with first loop
loop receive (r7) 21, 22, 23
 receive (r8) 24, 25, 26
 add r9, r8, r7 27, 28, 29
 send (1, r9) 30, 31, 32
 receive (r7) 45, 46, 47
 receive (r8) 48, 49, 50
 add r9, r8, r7 51, 52, 52
 send (1, r9) 54, 55, 56
 receive (r7) 74, 75, 76
 receive (r8) 77, 78, 79
 add r9, r8, r7 80, 81, 82
 send (1, r9) 83, 84, 85
 receive (r7) 104, 105, 106
 receive (r8) 107, 108, 109
 add r9, r8, r7 110, 111, 112
 send (1, r9) 113, 114, 115
 addi r3, r3, 1 116
 bne r3, 984, loop 117, 118, 119

Answer:
Based on the timing information derived above, the time to complete 12 iterations of the loop is:

o 123 – 12 + 1 = 112 cycles

Thus, the time to complete the entire loop is:

o Startup:
o 11 cycles

o Main loop:
o floor(1000 / 12) x 112 = 83 x 112 = 9296 cycles

o Clean up:
o 20 cycles

Thus, the total number of cycles for this code is: 11 + 9296 + 20 = 9327 cycles

This gives us a speedup of: 17983 / 9327 = ~1.928

o However, speedup does not come entirely from multiple cores
o Also get benefit from loop unrolling.

Question 4:
In above example, made a slightly idealistic assumption. What is it?

o Hint: see bold text.

Answer:

- Any sent message is received instantaneously in the next CC.

Hidden questions:
A. What interconnection latency is tolerable?

- 12 iterations of the loop involve 12 sends
- Letʼs assume the time to send a message is N cycles

Need to satisfy:
11 + [(112+12N)*83)] + 20 < 17983

If we solve for N, we see that N is equal to 8.69; thus, practically, N must be less than 9.

B. Not unreasonable to expect N to be on the order of 4 cycles. If so, what is the speedup obtained?

 New number of cycles:
 = 11 + [(112 +12*4)*83] + 20
 = 11 + 13280 + 20
 = 13280

 Speedup becomes: 17983 / 13280 = 1.35

Take away: loop with dependencies is practically hard to parallelize…

