
University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up! 1!

Lecture 26 "
GPU Wrap Up!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Suggested Readings!
•! Readings!

–! H&P: Chapter 7 – especially 7.1-7.8!

•! (Over next 2 weeks)!

–! Introduction to Parallel Computing!

•! https://computing.llnl.gov/tutorials/parallel_comp/!

–! POSIX Threads Programming!

•! https://computing.llnl.gov/tutorials/pthreads/!

–! How GPUs Work!

•! www.cs.virginia.edu/~gfx/papers/pdfs/59_HowThingsWork.pdf!

2!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the
right application!

Writing more !
efficient code!

Multicore processors
and programming!

CSE 30321!

•! Explain & articulate why modern

microprocessors now have more than

one core and how SW must adapt. "
•! Use knowledge about underlying HW

to write more efficient software"

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

GPU discussion points!
•! Motivation for GPUs:!

•! Necessary processing!

•! Example problem:!

–! Generic CPU pipeline!

–! GPU-based vs. Uni-processor Z-buffer problem!

•! What does a GPU architecture look like?!

–! Explain in context of SIMD!

•! Applicability to other computing problems!

4!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Recap: How is a frame rendered?!
•! Helpful to consider how the 2 standard graphics

APIs – OpenGL and Direct 3D – work.!

–! These APIs define a logical graphics pipeline that is

mapped onto GPU hardware and processors – along with

programming models and languages for the

programmable stages!

–! In other words, API takes primitives like points, lines and

polygons, and converts them into pixels!

•! How does the graphics pipeline do this?!

–! First, important to note that “pipeline” does not mean the
5 stage pipeline we talked about earlier !

–! Pipeline describes sequence of steps to prepare image/

scene for rendering!

5!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Recap: How is a frame rendered? "
(Direct3D pipeline)!

6!

Part J!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Example: Z-buffer!

7!

http://blog.yoz.sk/examples/pixelBenderDisplacement/zbuffer1Map.jpg

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

GPUs!
•! GPU = Graphics Processing Unit!

–! Efficient at manipulating computer graphics!

–! Graphics accelerator uses custom HW that makes

mathematical operations for graphics operations fast/efficient!

•! Why SIMD? Do same thing to each pixel!

•! Often part of a heterogeneous system!

–! GPUs don#t do all things CPU does!

–! Good at some specific things!

•! i.e. matrix-vector operations!

•! GPU HW:!

–! No multi-level caches!

–! Hide memory latency with threads!

•! To process all pixel data!

–! GPU main memory oriented toward bandwidth!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

NVIDIA Examples:"
GeForce 8800, GeForce 500 series!

•! NVIDIA GPU: !Split into N “nodes” (N ~16)!

–! Each node = “multiprocessor” (MP)!

•! 8800: !16 MP @ 1.35 GHz!

•! 500:! !16 MP @ 750 MHz?!

–! Each MP = M streaming processors (SP) (M: 8—32)!

•! 8000: ! !8 SP per MP!

•! 500:! ! !32 SP per MP!

9!

Circa 2008! Late 2010, early 2011!

“Multiprocessor” is

NVIDIA term, but
reasonable given our

early definition!

SP consists of

a floating
point unit and

integer unit!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Example NVIDIA architecture!

10!

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs);

the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM

partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded

instruction unit, and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Peak Performance:!
•! 8800 has floating point multiply-add instruction!

–! (see your project for utility of this instruction)!

•! Peak performance obtained if all SP run in parallel:!

•! What about 500?!

–! More limited knowledge about HW, but assume same
multiply-add instruction:!

•! Speedup ~ 2.22!

–! Consistent with Moore#s Law:!

•! 500 = 40 nm technology, 8800 = 65 nm technology!

•! Should see 2X improvement per technology generation!

11!

!

16 MP"
8 SP

MP
"

2 FLOPs / instruction

SP
"

1 instruction

clock
"

1.35x10
9
clocks

s
=

345.6 GFLOPS

s

!

16 MP"
32 SP

MP
"

2 FLOPs / instruction

SP
"

1 instruction

clock
"

0.75x10
9
clocks

s
=

768 GFLOPS

s

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Cache and Memory in NVIDIA GPU!
•! On 8800, each MP just 16 Kbytes of cache!

–! Shared by 8 SPs!

•! Also, each MP = 8192 registers!

–! 512 per SP!

•! Memory:!

–! 768 Mbytes DRAM @ 900 MHz!

•! DRAM is wide!

–! 8 Bytes!

–! Want >> bandwidth given parallel nature of GPU!

–! Often DRAM components specific to GPU!

–! How much data can memory interface deliver to GPU?!

12!

!

6 Partitions"
8 Bytes

Transaction
"

2 Transactions

clock
"

0.9x109 clocks

s
=

86.4 GBytes

s

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Data consumption vs. Data delivery!
•! What if each FLOP required 1 or 2 data words?!

–! (Assume data word = 32 bits OR 4 bytes)!

•! What data delivery rate is required?!

•! But, our memory interface can only deliver 1/16th or
1/32th of this…!

–! How do we mask memory latency?!

13!

!

[4,8] Bytes

FLOP
"

345.6 GFLOPS

s
=

1382.4 GBytes

s
or

2764.8 GBytes

s

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Threads mask memory latencies!
•! Each SP supports HW-based threads!

•! In 8800, MP manages group of 32 threads called a warp!

–! Ideally:!

•! All 32 threads execute the same instruction on different data!

–! True SIMD!!

•! All 8 SPs busy each CC…!

–! More realistically:!

•! Don#t always get true SIMD!

•! Why?!

–! Problem not 100% parallelizable!

–! Still need to deal with conditions, etc. (i.e. BEQ…)!

•! Interesting note:!

–! No branch prediction HW!

–! Just assign each execution path to a thread and pick 1!!

14!

1! 2! 3! 4! 5! 6! 7! 8!

IF! ELSE!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

GPU vs. (Fine Grain) Threaded single core!

•! T2 can switch
threads each CC!

•! 8800 supports 24

warps!

–! Can switch warps

every 2 or 4 CCs!

15!

1! 2! 3! 4! 5! 6! 7! 8!t1!
t2!
t3!
t4!

1 thread in 1 CC vs. 8 threads in 1 CC!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

GPUs!
•! GPU = Graphics Processing Unit!

–! Efficient at manipulating computer graphics!

–! Graphics accelerator uses custom HW that makes

mathematical operations for graphics operations fast/

efficient!

•! Why SIMD? Do same thing to each pixel!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

Programming GPUs!
•! API language compilers target industry standard

intermediate languages instead of machine
instructions!

–! GPU driver software generates optimized GPU-specific

machine instructions!

•! Also, SW support for non graphics programming:!

–! NVIDIA has graphics cards that support API extension to

C – CUDA (“Computer Unified Device Architecture”)!

•! Allows specialized functions from a normal C program to run
on GPU#s stream processors!

•! Allows C programs that can benefit from integrated GPU(s) to

use where appropriate, but also leverage conventional CPU!

17!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

A bit more on CUDA…!
•! Developed by NVIDIA to program GPU processors!

•! Unified C/C++ programming for heterogeneous CPU-
GPU system!

–! Runs on CPU, sends work to GPU!

•! Involves data transfer from main memory & “thread dispatch”!

–! “Thread dispatch” is piece of program for GPU!

–! Programmer can specify # of threads/block + number of blocks

to run on GPU!

–! Can make threads within block share same local memory!

»! Therefore communicate with loads and stores!

–! CUDA compiler allocates registers to threads!

18!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

GPUs for other problems!
•! More recently: !

–! GPUs found to be more efficient than general purpose

CPUs for many complex algorithms!

•! Often things with massive amount of vector ops!

–! Example:!

•! ATI, NVIDIA team with Stanford to do GPU-based computation
for protein folding!

•! Found to offer up to 40 X improvement over more
conventional approach!

19!

University of Notre Dame!

CSE 30321 – Lecture 26 –GPU Wrap Up!

GPU Example!

