
University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture! 1!

Lecture 26 "
Parallel Programming Meets Architecture!

Adapted in part from: https://computing.llnl.gov/tutorials/parallel_comp!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

Suggested Readings!
•" Readings!

–" H&P: Chapter 7 – especially 7.1-7.8!

•" (Over next 2 weeks)!

–" Introduction to Parallel Computing!

•" https://computing.llnl.gov/tutorials/parallel_comp/!

–" POSIX Threads Programming!

•" https://computing.llnl.gov/tutorials/pthreads/!

–" How GPUs Work!

•" www.cs.virginia.edu/~gfx/papers/pdfs/59_HowThingsWork.pdf!

2!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the

right application!

Writing more !

efficient code!

Multicore processors

and programming!

CSE 30321!

•" Explain & articulate why modern

microprocessors now have more than

one core and how SW must adapt. !
•" Use knowledge about underlying HW

to write more efficient software!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

Understand the Problem and Program!
1.# To develop parallel software, must first understand if

serial code can be parallelized…!

–" Consider 2 examples…!

•" (A) Calculations on 2D array elements!

–" Computation on each array element independent from

others!

•" Serial code:!

•" If calculation of elements is independent from one another,
problem is “embarrassingly parallel”!

–" (usually computationally intensive)!

4!

for j =1:N!

 for i=1:N!

 a(i,j) = f(i,j)!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

Understand the Problem and Program!
–" Can distribute elements so

each processor owns its own

array (or subarray)!

•" This type of problem can lead to

“superlinear” speedup!

–" (Entire dataset may now fit in

cache)!

–" Parallel code might look like…!

5!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(1) Understand the Problem and Program!
•" (B) Calculate the numbers in a Fibonacci sequecne!

–" (Hint: Part of a project benchmark…)!

–" Fibonacci number defined by:!

•" F(n) = F(n-1) + F(n-2)!

–" Fibonacci series (1,1,2,3,5,8,13,21,…)!

–" This problem is non-parallelizable!!

•" Calculation of F(n) dependent on other calculations!

•" F(n-1) and F(n-2) cannot be calculated independently!

6!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(1) Understand the Problem and Program!
2.# Identify program “hotspots”!

–" Most work – i.e. in scientific or technical code – done in

just a few places!

3.# Identify program bottlenecks!

–" Are there areas that are disproportionately slow?!

•" (I/O usually slows program down ! i.e. see GPU example)!

–" Solution?!

•" Restructure program to tolerate latencies!

–" (again, see GPU example)!

4.# Identify other inhibitors!

–" Again, data dependence is example!

7!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

Example: Binary Search!
•" Is this problem parallelizable?!

8!

Part A!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(2) Partitioning!
•" Break up program into chunks of work that can be

distributed to multiple processing nodes!

–" 2 types:!

•" Domain decomposition!

•" Functional decomposition!

9!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(2) Domain Decomposition!

•" Each parallel task then

works on a portion of of
the data.!

•" Different ways to

partition data…!

10!

Data associated with a problem is decomposed.!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(2) Functional Decomposition!
•" Focus is on computation performed, not data

manipulated!

–" Problem decomposed according to work that is done!

–" Each task performs a portion of overall work!

11!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

Functional Decomposition!
•" Lends itself well to problems that can be split into

different tasks!

–" Example: Ecosystem modeling…!

•" Each program calculates population of a given group!

•" Each group$s growth depends on that of neighbor!

•" As time progresses, each process calculates current state!

–" Can then exchange information with neighbors…!

–" …and begin again…!

12!

Question:!
Is exchange

part of parallel

operation?!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(2) Functional Decomposition!
–" Example: Climate modeling!

•" Each model thought of as separate task!

•" Arrows represent exchanges of data…!

–" Atmosphere model generates wind velocity data ! !

!wind velocity data used by ocean model ! !

!ocean model generates sea surface temperature data ! !

!sea surface temperature data used by atmosphere model!

–" Within each model, may have embarrassingly parallel

functions, data dependencies, etc.!

13!

Questions:!
1.# Do coarse grain

dependencies exist too?!

2.# Are there potential load

balancing issues to

contend with?!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(3) Communication!
•" FYI…!

–" This topic gets its whole lecture!

•" (Focus will be the HW/architecture perspective)!

–" This topic gets its own homework problem!

•" (Focus will be the HW/architecture perspective)!

–" Here, we talk a bit about communication in the context of

the program itself…!

14!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(3) Communication!
•" Some problems (programs) don$t incur excessive

communication overhead!

–" Aforementioned image processing good example!

•" i.e. take every pixel and change its color!

–" No communication overhead required!

•" Most parallel programs / problems do involve tasks that
must share data with one another!

–" Could be practical (distributed memory)!

–" Could be algorithmic (e.g. heat diffusion problem)!

•" Changes to neighboring data has a direct effect on task$s data!

15!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(3) Communication (costs)!
•" Inter-task communication implies overhead!

•" Machine cycles / resources that could be used for
computation are instead…!

–" …spent packaging and transmitting data!

•" (NOT parallelizable)!

•" Communication usually means that tasks must be
synchronized…!

–" …so 1 task may wait for another to finish its work!

•" (NOT parallelizable)!

•" Like a highway in a major city, only so much bandwidth
for cars that want to use it…!

–" …competing communication traffic can further

exacerbate performance!

16!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(3) Communication!
•" Knowing which tasks must communicate with each

other is critical when writing parallel code!

–" Similarly, knowledge about communication vehicle

equally important!

•" Example:!

–" What if each of N nodes needs to send M bit message every Q

clock cycles?!

–" However, interconnection network can only support N, (M / 4) bit

messages every Q cycles…!

•" May have written correct code, but performance will suffer b/c

hardware cannot support implicit communication demands!

17!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

Examples:!
•" Heat transfer problem!

•" Loop carried dependence!

18!

Parts B, C!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(4) Synchronization!
•" When a task performs a communication operation,

some form of coordination is required with the other
task(s) participating in the communication!

–" Example:!

•" Before task can perform send, must first receive an

acknowledgment from the receiving task that it is OK to send!

–" (May not always be the case … but this is NOT parallelizable!)!

19!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(4) Types of synchronization!
•" Barrier!

–" Usually implies that all tasks are involved !

–" Each task performs its work until it reaches the barrier. It

then stops, or "blocks". !

–" When the last task reaches the barrier, all tasks are
synchronized. !

•" What happens from here varies.!

–" Often, a serial section of work must be done. !

–" In other cases, the tasks are automatically released to continue

their work.!

20!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(4) Types of synchronization!
•" Semaphore!

–" Can involve any number of tasks!

–" Typically used to serialize (protect) access to global data

or a section of code.!

–" Only one task at a time may use (own) the lock /
semaphore / flag.!

•" The first task to acquire the lock "sets" it. !

•" This task can then safely (serially) access the protected data

or code. !

•" Other tasks can attempt to acquire the lock but must wait until
the task that owns the lock releases it. !

21!

Questions:!
1.# In context of CSM, DSM, why is synchronization needed?!

2.# Does synchronization demand architectural support?!

University of Notre Dame!

CSE 30321 – Lecture 26 – Parallel Programming Meets Architecture!

(5) Load balancing!
•" (Saw example in Lecture 24)!

•" Idea:!

–" Want to keep all tasks busy at all times!

•" (i.e. minimize idle time)!

•" Example:!

–" If all tasks subject to barrier synchronization, slowest
task determines overall performance:!

22!

