Suggested Readings

+ Readings
— H&P: Chapter 7 — especially 7.1-7.8
+ (Over next 2 weeks)
— Introduction to Parallel Computing
+ https:/computing.linl.gov/tutorials/parallel comp/
Lecture 26 — POSIX Threads Programming

. . + https:/computing.linl.gov/tutorials/pthreads/
Parallel Programming Meets Architecture _ How GPUs Work

* www.cs.virginia.edu/~gfx/papers/pdfs/59 HowThingsWork.pdf

Adapted in part from: https://computing.linl.gov/tutorials/parallel _comp

University of Notre Dame University of Notre Dame
CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 3 CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 4

Understand the Problem and Program

1. To develop parallel software, must first understand if

Multicore processors
and programming

LT serial code can be parallelized...
i — Consider 2 examples...
es M « (A) Calculations on 2D array elements
Explain & articulate why modern H H
mitToprocessors now have more than — Computation on each array element independent from
one core and how SW must adapt. others
Use knowledge about underlying HW .
to write more efficient software . Serial code: for j =1:N
for i=1:N
for i=0; i<5; i++ { a(i,j) = £(i,3)
a = (a*b) + c;
} !
MULT r1,r2,r3 #r1 € r2*r3 . ..
ADD ré,r{iZ H:z < :irm + If calculation of elements is independent from one another,
110011 | 000001 | 000010 | 000011 prObIem IS “embarraSSIngly para"el”
001110 | 000010 | 000001 | 000100 — (usually computationally intensive)
——

Writing more
efficient code

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 5

Understand the Problem and Program (1) Understand the Problem and Program
— Can distribute elements so + (B) Calculate the numbers in a Fibonacci sequecne
each procesbsor owns its own — (Hint: Part of a project benchmark...)
array (or subarra . . .
y'(Y) — Fibonacci number defined by:
+ This type of problem can lead to
“superlinear” speedup * F(n) = F("'1)_+ F(_n-2)
— (Entire dataset may now fit in — Fibonacci series (1,1,2,3,5,8,13,21,...)
cache) — This problem is non-parallelizable!
task1 task2 ... task N))
+ Calculation of F(n) dependent on other calculations
— Parallel code might look like... i out ST an NASTER o HORKER + F(n-1) and F(n-2) cannot be calculated independently
d:a%i;j?g:lz‘i::ii::umn,my last column
(1) Understand the Problem and Program Example: Binary Search

2. ldentify program “hotspots”

— Most work - i.e. in scientific or technical code — done in
just a few places

3. ldentify program bottlenecks
— Are there areas that are disproportionately slow?

* (/O usually slows program down - i.e. see GPU example)
— Solution?

* Restructure program to tolerate latencies
— (again, see GPU example)

4. ldentify other inhibitors
— Again, data dependence is example

+ Is this problem parallelizable?

University of Notre Dame

University of Notre Dame

CSE 30321 - Lecture 26 — Parallel Programming Meets Architecture 10

(2) Domain Decomposition
Data associated with a problem is decomposed.

(2) Partitioning
+ Break up program into chunks of work that can be

distributed to multiple processing nodes

— 2 types:
+ Domain decomposition
* Functional decomposition

+ Different ways to
partition data...

+ Each parallel task then
works on a portion of of

the data. .

BLOCK CcYcCLIC

i

1D
2D
Problem Data Set

\ BLOCK, *

*, BLOCK BLOCK, BLOCK

|
T

=llZ

cycLic, * * CYCLIC CYCLIC, CYCLIC

University of Notre Dame

University of Notre Dame

CSE 30321 - Lecture 26 — Parallel Programming Meets Architecture 1

(2) Functional Decomposition

+ Focus is on computation performed, not data
manipulated
— Problem decomposed according to work that is done

— Each task performs a portion of overall work

CSE 30321 - Lecture 26 — Parallel Programming Meets Architecture 12

Functional Decomposition

+ Lends itself well to problems that can be split into
different tasks
— Example: Ecosystem modeling...
- Each program calculates population of a given group
« Each group’s growth depends on that of neighbor

+ As time progresses, each process calculates current state
— Can then exchange information with neighbors...

University of Notre Dame

! — ...and begin again...
:“ _— Question:
— [] \ - — — — — — Is exchange
- / \ 0 @ part of parallel
| N\ o to P5 H] ® % toP1 operation?
3 £ -«— «—> Ole—> Ol+—r g’ «— —
= i) 2 2] £
: 5 5 5 g 8
v [T o 7] =]
-«— “«—> -«— «— —>
task 0 task 1 task 2 task 3 A — pa— — — —_—
P1 P2 P3 P4 P5

University of Notre Dame

CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 13 CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 14

(2) Functional Decomposition (3) Communication
— Example: Climate modeling + FYI...
- Each model thought of as separate task — This topic gets its whole lecture

+ Arrows represent exchanges of data...
— Atmosphere model generates wind velocity data 2>
wind velocity data used by ocean model >
ocean model generates sea surface temperature data 2>

+ (Focus will be the HW/architecture perspective)
— This topic gets its own homework problem
+ (Focus will be the HW/architecture perspective)

sea surface temperature data used by atmosphere model - Here, we talk a bit about communication in the context of
~ the program itself...
Atmospheric Model Questions:
1. Do coarse grain
{ N dependencies exist too?
Hyero 0y S > 2. Are there potential load
Model balancing issues to
contend with?
Land/Surface Model

./

— Within each model, may have embarrassingly parallel
functions, data dependencies, etc.

CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 15 CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 16
(3) Communication (3) Communication (costs)
+ Some problems (programs) don’t incur excessive * Inter-task communication implies overhead
communication overhead .

Machine cycles / resources that could be used for
— Aforementioned image processing good example computation are instead...

+ i.e. take every pixel and change its color
— No communication overhead required
+ Most parallel programs / problems do involve tasks that
must share data with one another synchronized...

— Could be practical (distributed memory) — ...s0 1 task may wait for another to finish its work
— Could be algorithmic (e.g. heat diffusion problem) - (NOT parallelizable)

+ Changes to neighboring data has a direct effect on task’s data

— ...spent packaging and transmitting data
+ (NOT parallelizable)

+ Communication usually means that tasks must be

- Like a highway in a major city, only so much bandwidth
for cars that want to use it...

— ...competing communication traffic can further
exacerbate performance

University of Notre Dame University of Notre Dame

CSE 30321 - Lecture 26 — Parallel Programming Meets Architecture 17

CSE 30321 - Lecture 26 — Parallel Programming Meets Architecture 18
(3) Communication Examples:
+ Knowing which tasks must communicate with each + Heat transfer problem

other is critical when writing parallel code
— Similarly, knowledge about communication vehicle
equally important
+ Example:

— What if each of N nodes needs to send M bit message every Q
clock cycles?

+ Loop carried dependence

— However, interconnection network can only support N, (M / 4) bit
messages every Q cycles...

+ May have written correct code, but performance will suffer b/c
hardware cannot support implicit communication demands

University of Notre Dame

University of Notre Dame

CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 19 CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture
(4) Synchronization (4) Types of synchronization
+ When a task performs a communication operation, - Barrier

some form of coordination is required with the other
task(s) participating in the communication
— Example:

- Before task can perform send, must first receive an
acknowledgment from the receiving task that it is OK to send
— (May not always be the case ... but this is NOT parallelizable!)

— Usually implies that all tasks are involved

— Each task performs its work until it reaches the barrier. It
then stops, or "blocks".

— When the last task reaches the barrier, all tasks are
synchronized.
+ What happens from here varies.
— Often, a serial section of work must be done.

— In other cases, the tasks are automatically released to continue
their work.

University of Notre Dame University of Notre Dame

CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 21 CSE 30321 — Lecture 26 — Parallel Programming Meets Architecture 22

(4) Types of synchronization (5) Load balancing
+ Semaphore
— Can involve any number of tasks

— Typically used to serialize (protect) access to global data
or a section of code.

— Only one task at a time may use (own) the lock /

+ (Saw example in Lecture 24)
* ldea:

— Want to keep all tasks busy at all times
+ (i.e. minimize idle time)

y + Example:
semaphore / flag. . . L
P . 9 . . . — If all tasks subject to barrier synchronization, slowest
« The first task to acquire the lock "sets" it. task determines overall performance:
« This task can then safely (serially) access the protected data
or code.

« Other tasks can attempt to acquire the lock but must wait until
the task that owns the lock releases it.

Questions:

1. In context of CSM, DSM, why is synchronization needed? work |
2. Does synchronization demand architectural support? walii

time

University of Notre Dame University of Notre Dame

