

Lecture 27: Board Notes: Cache Coherency

Part A: What makes a memory system coherent?

Generally, 3 qualities that must be preserved…

(1) Preserve program order:

- A read of A by P1 will reference the value written by the most recent write to A (i.e. by P1)
- Thus, in the absence of sharing, each processor behaves as a uni-processor would

(2) All writes must be seen by all processors:

- If P1 writes to A, and P2 reads A after a certain amount of time, and there is no other write to A in
between, P2 reads the value written by P1.

- Thus, P2 must eventually see the new value…

(3) Causality must be preserved:

- Writes to the same location are serialized
o i.e. 2 writes to the same location A are seen in the same order by all processors

- Example:
o A =0
o P1 increments A
o P2 waits until A = 1
o P2 increments A
o P3 sees A = 2

- In other words, different processors should not see these writes in different orders
o i.e. P3 should not see the write by P2 first and then the write by P1

Part B: Snooping
Consider a cache, on one node of a multiprocessor (i.e. multi-core chip?) where the block is slightly re-
designed…

- All bus activity must be compared to cache entries
o i.e. if Node 1 sends out a message saying it just wrote to a block with Tag XYZ, if Node 2

has a valid cached copy of a block with Tag XYZ, then some action will need to be taken
- Why 2 sets of tags?

o Can use 1 said to do lookups for normal reads and others to do “snoop” checks
o see part C

Part C: Snooping
When listening on the bus, what to we do if there is a cached copy and a “write” by another node is
broadcast?

Answer:
Generally follow 1 of 2 protocols: UPDATE or INVALIDATE

What event? Update protocol Invalidate protocol
A burst of writes from 1
processor to 1 address

Each write updates all cached
copies (preserves property 2 in
Part A)

All cached copies are no longer
valid on 1st write; next readgets
new copy (preserves property 2
in Part A)

Writes to different words in the
same cache block

Update sent for EACH word No need for subsequent
invalidates; first write invalidates
other block copies; might still
broadcast address depending
on coherency protocol

Producer-consumer latency Producer sends update;
consumer reads new value in
cache

Producer invalidates
consumerʼs copy; consumer will
experience a read miss and
must request a new block

Regarding producer-consumer latency:

- The invalidate protocol ensures that Property 3 above is preserved as writes are ordered by bus
invalidates

o Means LOTS of bus traffic!
- The update protocol ensures that Property 3 above is preserved as all nodes see writes in the

order in which they obtain access to the bus
o Usually wins…

Part D: MSI Cache Coherency Protocol

How do we actually implement snooping?

Can support a protocol called MSI letters refer to a state the cache block could be in…

- Invalid State:
o Block B is not in cache C

- Modified State:
o Block B is in cache C and is dirty
o Consequences:

 When this block is kicked out, main memory must be updated
 We can read or write a block without bus traffic

 There is no other cached copy of this block
- Shared State:

o Block B is in multiple caches (Cnʼs)
o Consequences and Insight:

 Multiple copies are being read simultaneously
 Must send request to “upgrade” to M state before a write

Consider the following state transitions also, DRAW PICTURE ON BOARD:

 State

Transition
Local Request or
Bus Message?

Whatʼs happening?

1 I S Local request - Cache block currently invalid processor X tries to
read

- Data not present
- Send bus request for data from memory

2 I I Bus message - A cache sees a read or write request for block A …
but it doesn't have it so we stay in I

- (remember – must always snoop)
3 S I Bus message - Another cache has written to a block that is cached

locally
- With the invalidate protocol, a locally cache copy

must be invalidated
4 S S Local request - We do a local read of data that is already cached

locally
5 S S Bus message - Another cache asks for a copy of a block we have in

order to do a read
- As the request is just for another cached copy for

reading, existing copies can stay in the shared state
6 M S Bus message - A block has been modified by node X; node Y wants

to read this data
- Therefore data must be written back to memory

before and/or in addition to going to the cache
requesting it

- Data is not shared again and memory has a copy as
well

7 S M Local request - Local process writes to cache
- Must broadcast that it is doing a write to invalidate

other copies that may be cached
- Locally, the block transitions to a modified state

8 M M Local request - If we have a modified copy, and there are no other
copies out there, we can read and write as we please

9 I M Local request - Local copy is not in the cache and we want to write
- We get it, write to it, and place it in a modified state

10 M I Bus request - Another cache wants to write our modified data
- We must invalidate our local copy … as it no longer

is the “most recent” and send our data to memory
and/or cache

Part E: MESI Cache Coherency Protocol

Can the overhead associated with the S M transition be improved?

- We really just need to invalidate, but instead we send out a write request message that is
broadcast to call nodes, memory

- Can cut this overhead by adding an “E” state which stands for “Exclusive”
o Eliminates bus operations when node X wants to do a read/write and there are no other

cached copies
o Go from E M with no bus traffic

Would add 5 states to the MSI state machine

- The first 10 are exactly the same
- There is NO overhead

o We need 2 bits of information to encode 3 states, we also need 2 bits of information to
encode 4 states

Consider the following state transitions also, DRAW PICTURE ON BOARD:

 State

Transition
Local Request or
Bus Message?

Whatʼs happening?

1 I E Local request - We do a read (when we initially did NOT have the
block in our cache AND no other block has the data
cached)

2 E I Bus request - Another processor with no cached copy wants to
write

- Our processor must invalidate its copy
- As no modifications have been made (i.e. no dirty bit

was set) there is no need to write back to memory
too

3 E E Local request - We read our cache copy
- No other note has a cached copy so we stay in E

4 E M Local request - We are in E and write out block
- Must move to M
- Will determine if writeback needed on an invalidate

5 E S Bus request - Another node wants to read data we have cached
- No writes were made however so we can stay in S

and keep a copy cached

Part F: How intervention happens

First … how do we know what state to cache block B in?

- If thereʼs an address and data, receiver just sees an address and data.
- Where did it come from?

Realistically, it works like this:

A. P1 wants to read B puts read request on the bus
B. Does P1 cache B in ʻSʼ or ʻEʼ state with MESI?
C. Solution use share signal
D. Share always low until another node pulls it high
E. P2 snoops, P1 requests, pulls share signal high p1 sees share go high and puts B in shared

state

