
University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency! 1!

Lecture 27 "
Cache Coherency!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Suggested Readings!
•! Readings!

–! H&P: Chapter 5.8!

•! Could also look at material on CD referenced on p. 538 of your
text!

2!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency! 3!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the
right application!

Writing more !
efficient code!

Multicore processors
and programming!

CSE 30321!

•! Explain & articulate why modern

microprocessors now have more than

one core and how SW must adapt. "

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

What makes a memory system coherent?!
•! Program order!

•! Sequential writes!

•! Causality!

4!

Part A!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Coherency and Caches!
•! One centralized shared cache / memory is not practical!

–! Data must be cached locally!

•! Consider the following…!

–! 1 node works with data no other node uses!

•! Why not cache it?!

–! If data is frequently modified, do we always tell everyone
else?!

–! What if data is cached and read by 2 nodes and now one
of them wants to do a write?!

•! How is this handled?!

–! …!

5!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Maintaining Cache Coherence!
•! Hardware schemes!

–! Shared Caches!

•! Trivially enforces coherence!

•! Not scalable (L1 cache quickly becomes a bottleneck)!

–! Snooping!

•! Needs a broadcast network (like a bus) to enforce coherence!

•! Each cache that has a block tracks its sharing state on its own!

–! Directory!

•! Can enforce coherence even with a point-to-point network!

•! A block has just one place where its full sharing state is kept!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

How Snooping Works!

7!

Part B!

State Tag Data!

CPU!

Bus!

CPU references check cache
tags (as usual)!

Cache misses filled from
memory (as usual)!

! !+!
Other read/write on bus must
check tags, too, and possibly
invalidate!

Often 2 sets of tags…why?"

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Update vs. Invalidate!
•! A burst of writes by a processor to one address!

–! Update: each sends an update!

–! Invalidate: only the first invalidation is sent!

•! Writes to different words of a block!

–! Update: update sent for each word!

–! Invalidate: only the first invalidation is sent!

•! Producer-consumer communication latency!

–! Update: producer sends an update,"
consumer reads new value from its cache!

–! Invalidate: producer invalidates consumer#s copy,"
consumer#s read misses and has to request the block!

•! Which is better depends on application!

–! But write-invalidate usually wins!

Part C!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Write invalidate example!

•! Assumes neither cache had value/location X in it 1st!

•! When 2nd miss by B occurs, CPU A responds with
value canceling response from memory.!

•! Update B#s cache & memory contents of X updated!

•! Typical and simple…!

Processor
Activity!

Bus Activity! Contents
of CPU A#s

cache!

Contents of
CPU B#s cache!

Contents of
memory

location X!

0!

CPU A reads X! Cache miss for X! 0! 0!

CPU B reads X! Cache miss for X! 0! 0! 0!

CPU A writes a
1 to X!

Invalidation for X! 1! 0!

CPU B reads X! Cache miss for X! 1! 1! 1!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Write update example!

•! Assumes neither cache had value/location X in it 1st!

•! CPU and memory contents show value after processor
and bus activity both completed!

•! When CPU A broadcasts the write, cache in CPU B and
memory location X are updated!

Processor
Activity!

Bus Activity! Contents
of CPU A#s

cache!

Contents of
CPU B#s
cache!

Contents of
memory

location X!

0!

CPU A reads X! Cache miss for X! 0! 0!

CPU B reads X! Cache miss for X! 0! 0! 0!

CPU A writes a 1
to X!

Write broadcast of
X!

1! 1! 1!

CPU B reads X! 1! 1! 1!

(Shaded parts are different than before)!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

M(E)SI Snoopy Protocols for $ coherency!
•! State of block B in cache C can be!

–! Invalid: B is not cached in C!

•! To read or write, must make a request on the bus!

–! Modified: B is dirty in C!

•! C has the block, no other cache has the block, "
and C must update memory when it displaces B!

•! Can read or write B without going to the bus!

–! Shared: B is clean in C!

•! C has the block, other caches have the block, "
and C need not update memory when it displaces B!

•! Can read B without going to bus!

•! To write, must send an upgrade request to the bus!

–! Exclusive: B is exclusive to cache C!

•! Can help to eliminate bus traffic!

•! E state not absolutely necessary!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

MSI protocol!
•! See notes and board!

12!

Part D!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

MESI protocol!
•! See notes and board!

13!

Part E!
University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Cache to Cache transfers!
•! Problem!

–! P1 has block B in M state!

–! P2 wants to read B, puts a RdReq on bus!

–! If P1 does nothing, memory will supply the data to P2!

–! What does P1 do?!

•! Solution 1: abort/retry!
–! P1 cancels P2#s request, issues a write back!

–! P2 later retries RdReq and gets data from memory!

–! Too slow (two memory latencies to move data from P1 to P2)!

•! Solution 2: intervention!
–! P1 indicates it will supply the data (“intervention” bus signal)!

–! Memory sees that, does not supply the data, and waits for P1#s data!

–! P1 starts sending the data on the bus, memory is updated!

–! P2 snoops the transfer during the write-back and gets the block!

Part F!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Directory-Based Coherence for DSM!
•! Typically in distributed shared memory!

•! For every local memory block, "
local directory has an entry!

•! Directory entry indicates!

–! Who has cached copies of the block!

–! In what state do they have the block!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Basic Directory Scheme!
•! Each entry has!

–! One dirty bit (1 if there is a dirty cached copy)!

–! A presence vector (1 bit for each node)"
Tells which nodes may have cached copies!

•! All misses sent to block#s home!

•! Directory does needed coherence actions!

•! Eventually, directory responds with data!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Read Miss!
•! Processor Pk has a read miss on block B, "

sends request to home node of the block!

•! Directory controller!

–! Finds entry for B, checks D bit!

–! If D=0!
•! Read memory and send data back, set P[k]!

–! If D=1!
•! Request block from processor whose P bit is 1!

•! When block arrives, update memory, clear D bit,"
send block to Pk and set P[k]!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Directory Operation!
•! Network controller connected to each bus!

–! A proxy for remote caches and memories!

•! Requests for remote addresses forwarded to home,"
responses from home placed on the bus!

•! Requests from home placed on the bus,"
cache responses sent back to home node!

•! Each cache still has its own coherence state!

–! Directory is there just to avoid broadcasts"
and order accesses to each location!

•! Simplest scheme:"
If access A1 to block B still not fully processed by directory"
when A2 arrives, A2 waits in a queue until A1 is done!

University of Notre Dame!

CSE 30321 – Lecture 27 – Cache Coherency!

Shared Memory Performance!
•! Another “C” for cache misses!

–! Still have Compulsory, Capacity, Conflict!

–! Now have Coherence, too!
•! We had it in our cache and it was invalidated!

•! Two sources for coherence misses!

–! True sharing!
•! Different processors access the same data!

–! False sharing!
•! Different processors access different data,"

but they happen to be in the same block!

