Lecture 28: Board Notes: On-chip IC NWs

Consider the following "sea" of processor cores and routers

Let's look inside of a router first...

- Router has 2 main components:

1. Datapath:

- Handles storage and movement of a packet's payload
- Consists of input buffers, switch, \& output buffers

2. Control

- Logic to coordinate packet resource allocation
- I'm going to talk about a "Virtual Channel Router"
- Virtual channel router requires extra resources (HW), but can help overcome blocking issues
- (Might see blocking issues with wormhole routing)
- (VC allows packets to pass a blocked packet and make better use of idle bandwidth)

Example:

1. Packet B enters node \#1 from the network; B acquires channel p from node \#1 \rightarrow node \#2
2. A $2^{\text {nd }}$ packet A has entered node \#1 from the wst and needs to be routed east to node \#3
3. Meanwhile, B wants to leave node \#2 and go south, but is blocked
4. Now channels p and q are idle .. but cannot be used
a. Packet A is blocked in node \#1
b. It cannot acquire channel p
c. B blocks

See figure:

Now, assume 2 VCs per physical channel:

1. B arrives at node \#1 and acquires the bandwidth to go to channel p
2. A arrives from the east, B tries to leave node \#2 and is blocked
3. A can use free bandwidth p and goto another VC on node \#2
4. Can also proceed onto node \#3

This is a better use of resources

- May have 1 physical channel, but more buffers

What happens during packet routing?

1. Let's start with a flit of a packet arriving at the input unit of a router

- Input unit consists of a flit buffers to hold arriving flits until they can be forwarded
- Input unit also maintains state of virtual channel
i. I: Idle
ii. R: Routing
iii. V: Waiting for virtual channel
iv. A: Active
- Once packet in router, heed to perform route computation to see where it goes; can then go to VC for allocation

2. Each head flit must advance through 4 stages of routing computation

- It's pipelined! Assume...
- RC: Routing Computation
- VA: Virtual Channel Allocation
- SA: Switch Allocation
- ST: Switch Traversal
- Packet might move through like this:

	1	2	3	4	5	6	7
Head Flit	RC	VA	SA	ST			
Body Flit 1		**		SA	ST		
Body Flit 2					SA	ST	
Tail Flit						SA	ST

- ** (second body flit arrives)

Important Points:

- t_{r} (time through a single router) does not equal 1!
- (more like 5 or 6 at least)
- Routing and VC allocation are per packet functions
- Nothing for body flits to do
- With no stalls, need 3 input buffers (for 3 flits)
- With stalls, need \# of buffers = \# of packets

Outlook:

- Ultimately, issues involved in routing process discussed above + router architecture + storage needed determine the bandwidth for the topology
- Possibilities:
- Even though you can devise a topology for ideal performance, it may not be feasible to implement
- Or, 1 part may be technologically feasible (pitch) but another may not be (router or buffer)

Why can routers be hard to implement?

Consider the following picture:

Now, consider how connections would actually be made on chip:

- Discuss metal stack
- Show cross-sectional die photo
- Draw lines for input and output

Now, let's go back to our picture and made some observations:

1. No lines of the same color can touch (it would be an electrical short)
2. We draw 1 line, but really many (1 line for each bit)
3. Router areas are by no means insignificant!

How can on-chip IC NWs affect performance?

Want to know - for a given IC NW topology - how long it takes to send a message:

- Note \rightarrow initial \#s in the absence of contention \rightarrow a bit more on this later

Time: (\# of hops) x (time in router) + time required for packet to traverse all channels + serialization latency
(serialization latency = ceiling(length of message / bandwidth))
Therefore, if:

- Average \# of hops $=6.25$
- Average time for packet to traverse all channels $=5.3333$
- Serialization latency $=3$
- Time in router $=2$
- Total time: $=\sim 20.8$

We'll conclude by looking at some real performance projections

