Lecture 28: Board Notes: On-chip IC NWs

Consider the following "sea" of processor cores and routers

Let's look inside of a router first...

- Router has 2 main components:
 - 1. Datapath:
 - Handles storage and movement of a packet's payload
 - o Consists of input buffers, switch, & output buffers
 - 2. Control
 - Logic to coordinate packet resource allocation
- I'm going to talk about a "Virtual Channel Router"
 - Virtual channel router requires extra resources (HW), but can help overcome blocking issues
 - (Might see blocking issues with wormhole routing)
 - (VC allows packets to pass a blocked packet and make better use of idle bandwidth)

Example:

- 1. Packet B enters node #1 from the network; B acquires channel p from node #1 \rightarrow node #2
- 2. A 2nd packet A has entered node #1 from the wst and needs to be routed east to node #3
- 3. Meanwhile, B wants to leave node #2 and go south, but is blocked
- 4. Now channels p and q are idle .. but cannot be used
 - a. Packet A is blocked in node #1
 - b. It cannot acquire channel p
 - c. B blocks

See figure:

Now, assume 2 VCs per physical channel:

- 1. B arrives at node #1 and acquires the bandwidth to go to channel *p*
- 2. A arrives from the east, B tries to leave node #2 and is blocked
- 3. A can use free bandwidth *p* and goto another VC on node #2
- 4. Can also proceed onto node #3

This is a better use of resources

- May have 1 physical channel, but more buffers

What happens during packet routing?

- 1. Let's start with a flit of a packet arriving at the input unit of a router
 - o Input unit consists of a flit buffers to hold arriving flits until they can be forwarded
 - Input unit also maintains state of virtual channel
 - i. I: Idle
 - ii. R: Routing
 - iii. V: Waiting for virtual channel
 - iv. A: Active
 - Once packet in router, heed to perform route computation to see where it goes; can then go to VC for allocation
- 2. Each head flit must advance through 4 stages of routing computation
 - o It's pipelined! Assume...
 - RC: Routing Computation
 - VA: Virtual Channel Allocation
 - SA: Switch Allocation
 - ST: Switch Traversal
 - Packet might move through like this:

	1	2	3	4	5	6	7
Head Flit	RC	VA	SA	ST			
Body Flit 1		**		SA	ST		
Body Flit 2					SA	ST	
Tail Flit						SA	ST

• ** (second body flit arrives)

Important Points:

- \circ t_r (time through a single router) does not equal 1!
 - (more like 5 or 6 at least)
- Routing and VC allocation are per packet functions
 - Nothing for body flits to do
 - With no stalls, need 3 input buffers (for 3 flits)
 - With stalls, need # of buffers = # of packets

Outlook:

- Ultimately, issues involved in routing process discussed above + router architecture + storage needed determine the bandwidth for the topology
 - Possibilities:
 - Even though you can devise a topology for ideal performance, it may not be feasible to implement
 - Or, 1 part may be technologically feasible (pitch) but another may not be (router or buffer)

Why can routers be hard to implement?

Consider the following picture:

Now, consider how connections would actually be made on chip:

- Discuss metal stack
- Show cross-sectional die photo
- Draw lines for input and output

Now, let's go back to our picture and made some observations:

- 1. No lines of the same color can touch (it would be an electrical short)
- 2. We draw 1 line, but really many (1 line for each bit)
- 3. Router areas are by no means insignificant!

How can on-chip IC NWs affect performance?

Want to know - for a given IC NW topology - how long it takes to send a message:

- Note \rightarrow initial #s in the *absence* of contention \rightarrow a bit more on this later
- Time: (# of hops) x (time in router) + time required for packet to traverse *all* channels + serialization latency

(serialization latency = ceiling(length of message / bandwidth))

Therefore, if:

-	Average # of hops	= 6.25
-	Average time for packet to traverse all channels	= 5.3333
-	Serialization latency	= 3
-	Time in router	= 2
-	Total time:	=~20.8

We'll conclude by looking at some real performance projections