
University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 1!

Lecture 28-29 "
Course Review!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 2

Q1: D[8] = D[8] + RF[1] + RF[4]!
 …!

! !I[15]: Add R2, R1, R4 RF[1] = 4!

! !I[16]: MOV R3, 8 RF[4] = 5!

! !I[17]: Add R2, R2, R3 D[8] = 7!
 …!

(n+1)

Fetch

PC=15

IR=xxxx

(n+2)

Decode

PC=16

IR=2214h

(n+3)

Execute

PC=16

IR=2214h

RF[2]=

 xxxxh

(n+4)

Fetch

PC=16

IR=2214h

RF[2]=

 0009h

(n+5)

Decode

PC=17

IR=0308h

(n+6)

Execute

PC=17

IR=0308h

RF[3]=

 xxxxh

CLK

(n+7)

Fetch

PC=17

IR=0308h

RF[3]=

 0007h

Clock cycles: "
Understand in multi-cycle, pipeline!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 3!

Common (and good) performance metrics!
•! latency: response time, execution time !

–! good metric for fixed amount of work (minimize time)!

•! throughput: bandwidth, work per time, “performance”!

–! = (1 / latency) when there is NO OVERLAP !

–! > (1 / latency) when there is overlap !

•! in real processors there is always overlap!

–! good metric for fixed amount of time (maximize work)!

•! comparing performance !

–! A is N times faster than B if and only if: !

•! perf(A)/perf(B) = time(B)/time(A) = N !

–! A is X% faster than B if and only if:!

•! perf(A)/perf(B) = time(B)/time(A) = 1 + X/100!

10 time units!

Finish!
each!

time unit!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Instruction!
Count!

Clock Cycle!
Time!

4!

CPU time (the “best” metric)!

•! We can see CPU performance dependent on:!

–! Clock rate, CPI, and instruction count!

•! CPU time is directly proportional to all 3:!

–! Therefore an x % improvement in any one variable leads
to an x % improvement in CPU performance!

•! But, everything usually affects everything:!

Hardware!
Technology!

CPI!

Organization! ISAs!
Compiler

Technology!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 5!

Recap: Pipelining improves throughput!

Inst. #! 1! 2! 3! 4! 5! 6! 7! 8!

Inst. i! IF! ID! EX! MEM! WB!

Inst. i+1! IF! ID! EX! MEM! WB!

Inst. i+2! IF! ID! EX! MEM! WB!

Inst. i+3! IF! ID! EX! MEM! WB!

Clock Number!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM! Reg!

P
ro

g
ra

m
 e

x
e
c
u

ti
o

n
 o

rd
e
r

(i
n

 i
n

s
tr

u
c
ti

o
n

s
)!

Time!

U
s
e
 a

ll
 a

v
a
il
a
b

le
 H

W
 a

t
a
ll
 t

im
e
s
!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 6!

Recap: pipeline math!
•! If times for all S stages are equal to T:!

–! Time for one initiation to complete still ST!

–! Time between 2 initiates = T not ST!

–! Initiations per second = 1/T!

•! Pipelining: Overlap multiple executions of same
sequence!

–! Improves THROUGHPUT, not the time to perform a
single operation!

Time for N initiations to complete: !NT + (S-1)T!

Throughput: ! ! ! !Time per initiation = T + (S-1)T/N ! T!!

Key to improving performance:"

“parallel” execution"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 7!

Recap: Stalls and performance!
•! Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle!

•! Pipelining can be viewed to:!

–! Decrease CPI or clock cycle time for instruction!

–! Let#s see what affect stalls have on CPI…!

•! CPI pipelined =!

–! Ideal CPI + Pipeline stall cycles per instruction!

–! 1 + Pipeline stall cycles per instruction!

•! Ignoring overhead and assuming stages are balanced:!

•! If no stalls, speedup equal to # of pipeline stages in
ideal case!

Stalls occur because of hazards!!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 8!

Recap: Structural hazards!
•! 1 way to avoid structural hazards is to duplicate

resources!

–! i.e.: An ALU to perform an arithmetic operation and an
adder to increment PC!

•! If not all possible combinations of instructions can be
executed, structural hazards occur!

•! Most common instances of structural hazards:!

–! When some resource not duplicated enough!

•! Pipeline stalls result of hazards, CPI increased from the
usual “1”!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 9!

Recap: Data hazards!
•! These exist because of pipelining!

•! Why do they exist???!

–! Pipelining changes order or read/write accesses to
operands!

–! Order differs from order seen by sequentially executing
instructions on un-pipelined machine!

•! Consider this example:!

–! ADD R1, R2, R3!

–! SUB R4, R1, R5!

–! AND R6, R1, R7!

–! OR R8, R1, R9!

–! XOR R10, R1, R11!

All instructions after ADD use

result of ADD "

ADD writes the register in WB

but SUB needs it in ID."

This is a data hazard!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 10!

Recap: Forwarding & data hazards!

•! Problem illustrated on previous slide can actually be solved
relatively easily – with forwarding!

•! In this example, result of the ADD instruction not really needed
until after ADD actually produces it!

•! Can we move the result from EX/MEM register to the beginning of
ALU (where SUB needs it)?!

–! Yes! Hence this slide!!

•! Generally speaking:!

–! Forwarding occurs when a result is passed directly to functional unit
that requires it.!

–! Result goes from output of one unit to input of another!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 11!

Recap: HW change for forwarding!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 12!

Recap: Forwarding doesn#t always work!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM!

A
L

U
!

Reg!IM!

Time!

LW R1, 0(R2)!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9! Reg!IM!

Can#t get data to subtract b/c result needed at beginning of!
CC #4, but not produced until end of CC #4.!

Load has a latency that!
forwarding can#t solve.!

Pipeline must stall until !
hazard cleared (starting !
with instruction that !
wants to use data until !
source produces it).!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 13!

Recap: Hazards vs. dependencies!
•! dependence: fixed property of instruction stream !

–! (i.e., program) !

•! hazard: property of program and processor
organization !

–! implies potential for executing things in wrong order !

•! potential only exists if instructions can be simultaneously
“in-flight” !

•! property of dynamic distance between instructions vs.
pipeline depth !

•! For example, can have RAW dependence with or
without hazard !

–! depends on pipeline !

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 14!

Branch/Control Hazards!
•! So far, we#ve limited discussion of hazards to:!

–! Arithmetic/logic operations!

–! Data transfers!

•! Also need to consider hazards involving branches:!

–! Example:!
•! 40: !beq !$1, $3, $28 # ($28 gives address 72)!

•! 44: !and !$12, $2, $5!

•! 48: !or !$13, $6, $2!

•! 52: !add !$14, $2, $2!

•! 72: !lw !$4, 50($7)!

•! How long will it take before the branch decision takes
effect?!

–! What happens in the meantime?!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 15!

A Branch Predictor!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 16!

Is there a problem with DRAM?!

µProc"
60%/yr."

(2X/1.5yr)"

DRAM"
9%/yr."

(2X/10yrs)"
1"

10"

100"

1000"

1
9
8
0
"

1
9
8
1
"

1
9
8
3
"

1
9
8
4
"

1
9
8
5
"

1
9
8
6
"

1
9
8
7
"

1
9
8
8
"

1
9
8
9
"

1
9
9
0
"

1
9
9
1
"

1
9
9
2
"

1
9
9
3
"

1
9
9
4
"

1
9
9
5
"

1
9
9
6
"

1
9
9
7
"

1
9
9
8
"

1
9
9
9
"

2
0
0
0
"

DRAM"

CPU"

1
9
8
2
"

Processor-Memory!
Performance Gap:"
grows 50% / year!

P
e
rf

o
rm

a
n

c
e
!

Time!

“Moore#s Law”"

Processor-DRAM Memory Gap (latency)!

Why is this a problem?!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Common memory hierarchy:!

17!

CPU Registers!
100s Bytes!
<10s ns!

Cache!
K Bytes!
10-100 ns!
1-0.1 cents/bit!

Main Memory!
M Bytes!
200ns- 500ns!
$.0001-.00001 cents /bit!

Disk!
G Bytes, 10 ms "
(10,000,000 ns)!
10-5 - 10-6 cents/bit!

Tape!
infinite!
sec-min!
10!-8!

Registers!

Cache!

Memory!

Disk!

Tape!

Upper Level!

Lower Level!

faster"

Larger"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 18!

Average Memory Access Time!

•! Hit time: basic time of every access.!

•! Hit rate (h): fraction of access that hit!

•! Miss penalty: extra time to fetch a block from lower
level, including time to replace in CPU!

AMAT = HitTime + (1 - h) x MissPenalty

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 19!

Where can a block be placed in a cache?!

0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7"

Fully Associative! Direct Mapped! Set Associative!

Set 0!Set 1!Set 2!Set 3!

Block 12 can go!
anywhere!

Block 12 can go!
only into Block 4!

(12 mod 8)!

Block 12 can go!
anywhere in set 0!

(12 mod 4)!

0 1 2 3 4 5 6 7 8 ..."

Cache:!

Memory:! 12"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 20!

How is a block found in the cache?!

•! Block offset field selects data from block!

–! (i.e. address of desired data within block)!

•! Index field selects a specific set!

•! Tag field is compared against it for a hit!

•! Could we compare on more of address than the tag?!

–! Not necessary; checking index is redundant!
•! Used to select set to be checked!

•! Ex.: Address stored in set 0 must have 0 in index field!

–! Offset not necessary in comparison – entire block is
present or not and all block offsets must match!

Block Address!

Tag! Index!

Block!
Offset!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 21!

Which block should be replaced on a
cache miss?!

•! If we look something up in cache and entry not there,
generally want to get data from memory and put it in
cache!

–! B/c principle of locality says we#ll probably use it again!

•! Direct mapped caches have 1 choice of what block to
replace!

•! Fully associative or set associative offer more choices!

•! Usually 2 strategies:!

–! Random – pick any possible block and replace it!

–! LRU – stands for “Least Recently Used”!
•! Why not throw out the block not used for the longest time!

•! Usually approximated, not much better than random – i.e.
5.18% vs. 5.69% for 16KB 2-way set associative!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

2nd-level caches!
•! Processor/memory performance gap makes us consider:!

–! If we should make caches faster to keep pace with CPUs!

–! If we should make caches larger to overcome widening
gap between CPU and main memory!

•! One solution is to do both:!

–! Add another level of cache (L2) between the 1st level
cache (L1) and main memory!

•! Ideally L1 will be fast enough to match the speed of the CPU
while L2 will be large enough to reduce the penalty of going to
main memory!

•! This will of course introduce a new definition for average
memory access time:!

–! Hit timeL1 + Miss RateL1 * Miss PenaltyL1!

–! Where, Miss PenaltyL1 =!
•! Hit TimeL2 + Miss RateL2 * Miss PenaltyL2!

•! So 2nd level miss rate measure from 1st level cache misses…!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Virtual Memory!
•! Some facts of computer life…!

–! Computers run lots of processes simultaneously!

–! No full address space of memory for each process!

•! Physical memory expensive and not dense - thus, too small!

–! Must share smaller amounts of physical memory among many
processes!

•! Virtual memory is the answer!!

–! Divides physical memory into blocks, assigns them to different
processes!

•! Compiler assigns data to a “virtual” address. !

–! VA translated to a real/physical somewhere in memory!

•! Allows program to run anywhere; where is determined by a particular
machine, OS!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Translating

VA to PA"

sort of like
finding right"

cache entry

with

division of

PA"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Review: Address Translation!

Program Paging Main Memory

Virtual Address

Register

Page Table

Page

Frame

Offset

P#

Frame #

Page Table Ptr

Page # Offset Frame # Offset

+

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Paging/VM!

CPU" 42" 356"

Physical"

Memory"

356"

page table"

i"

Operating"

System"

Disk

Special-purpose cache for translations"

Historically called the TLB: Translation Lookaside Buffer"

Cache!"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

An example of a TLB!

Page frame addr."
Page"

Offset"
<30>" <13>"

V"

<1>"

Tag"

<30>"

Phys. Addr."

<21>"

... …"

1" 2"

32:1 Mux"

3"

4"

LRU "

<2>"

 D"

<1>"

…"

<21>"

<13>"

(Low-order 13"

bits of addr.)"

(High-order 21"

bits of addr.)"

34-bit"

physical"
address"

Read/write policies and permissions…"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

The “big picture” and TLBs!

Try to read"

from cache"

TLB access"Virtual Address"

TLB Hit?"

Write?"Try to read"

from page"

table"

Page fault?"

Replace"

page from"

disk"

TLB miss"

stall"

Set in TLB"

Cache hit?"

Cache miss"

stall"

Deliver data"

to CPU"

Cache/buffer"

memory write"

Yes"

Yes"

Yes"Yes"

No"

No" No"

No"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

MIMD Multiprocessors!

Centralized!

Shared!

Memory!

Note: just 1 memory"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

MIMD Multiprocessors!

Distributed Memory!

Multiple, distributed memories here."

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Speedup"
metric for performance on latency-sensitive applications!

•! Time(1) / Time(P) for P processors!

–!note: must use the best sequential algorithm for Time(1);
the parallel algorithm may be different.!

1 2 4 8 16 32 64

1

2

4

8

1
6

3
2

6
4

processors

sp
ee

d
u

p

“linear” speedup!
(ideal)!

typical: rolls off!
w/some # of!
processors!

occasionally see!
“superlinear”... why?!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

What if you write
good code for 4-
core chip and then

get an 8-core chip?!

Impediments to Parallel Performance!
•! Reliability:!

–! Want to achieve high “up time” – especially in non-CMPs!

•! Contention for access to shared resources!

–! i.e. multiple accesses to limited # of memory banks may
dominate system scalability!

•! Programming languages, environments, & methods:!

–! Need simple semantics that can expose computational
properties to be exploited by large-scale architectures!

•! Algorithms!

•! Cache coherency!
–! P1 writes, P2 can read!

•! Protocols can enable $ coherency but add overhead!

32!

!

Speedup =
1

1-Fractionparallelizable[] +
Fractionparallelizable

N

Not all problems
are parallelizable"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Challenges: Latency!
•! …is already a major source of performance degradation!

–! Architecture charged with hiding local latency!

•! (that#s why we talked about registers & caches)!

–! Hiding global latency is also task of programmer!

•! (I.e. manual resource allocation)!

•! Today:!

–! access to DRAM in 100s of CCs!

–! round trip remote access in 1000s of CCs!

–! multiple clock cycles to cross chip or to communicate
from core-to-core!

•! Not “free” as we assumed in send-receive example from L27!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Recap: L24 – Parallel Processing on MC!
•! Simple quantitative examples on how (i) reliability, (ii)

communication overhead, and (iii) load balancing
impact performance of parallel systems!

•! Technology drive to multi-core computing!

34!

Why the clock flattening? POWER!!!!!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 35!

•! Processor complexity is good enough!
•! Transistor sizes can still scale!
•! Slow processors down to manage power!
•! Get performance from...!

Parallelism!

(i.e. 1 processor, 1 ns clock cycle!
vs.!

2 processors, 2 ns clock cycle)!

(Short term?) Solution!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Processes vs. Threads!
•! Process!

–! Created by OS!

–! Much “overhead”!

•! Process ID!

•! Process group ID!

•! User ID!

•! Working directory!

•! Program instructions!

•! Registers!

•! Stack space!

•! Heap!

•! File descriptors!

•! Shared libraries!

•! Shared memory!

•! Semaphores, pipes, etc.!

•! Thread!

–! Can exist within process!

–! Shares process
resources!

–! Duplicate bare
essentials to execute
code on chip!

•! Program counter!

•! Stack pointer!

•! Registers!

•! Scheduling priority!

•! Set of pending, blocked
signals!

•! Thread specific data!

36!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Multi-threading!
•! Idea:!

–! Performing multiple threads of execution in parallel!

•! Replicate registers, PC, etc.!

–! Fast switching between threads!

•! Flavors:!

–! Fine-grain multithreading!

•! Switch threads after each cycle!

•! Interleave instruction execution!

•! If one thread stalls, others are executed!

–! Coarse-grain multithreading!

•! Only switch on long stall (e.g., L2-cache miss)!

•! Simplifies hardware, but doesn#t hide short stalls!

–! (e.g., data hazards)!

–! SMT (Simultaneous Multi-Threading)!

•! Especially relevant for superscalar!

Parts C—F!
University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Coarse MT vs. Fine MT vs. SMT!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Mixed Models:!
•! Threaded systems and multi-threaded programs are

not specific to multi-core chips.!

–! In other words, could imagine a multi-threaded uni-
processor too…!

•! However, could have an N-core chip where:!

–! … N threads of a single process are run on N cores!

–! … N processes run on N cores – and each core splits
time between M threads!

39!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

GPUs!
•! GPU = Graphics Processing Unit!

–! Efficient at manipulating computer graphics!

–! Graphics accelerator uses custom HW that makes
mathematical operations for graphics operations fast/efficient!

•! Why SIMD? Do same thing to each pixel!

•! Often part of a heterogeneous system!

–! GPUs don#t do all things CPU does!

–! Good at some specific things!

•! i.e. matrix-vector operations!

•! GPU HW:!

–! No multi-level caches!

–! Hide memory latency with threads!

•! To process all pixel data!

–! GPU main memory oriented toward bandwidth!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Parallel Programming!
•! To develop parallel software, must first understand if

serial code can be parallelized…!

–! Consider 2 examples…!

•! (A) Calculations on 2D array elements!

–! Computation on each array element independent from
others!

•! Serial code:!

•! If calculation of elements is independent from one another,
problem is “embarrassingly parallel”!

–! (usually computationally intensive)!

41!

for j =1:N!

 for i=1:N!

 a(i,j) = f(i,j)!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Understand the Problem and Program!
–! Can distribute elements so

each processor owns its own
array (or subarray)!

•! This type of problem can lead to
“superlinear” speedup!

–! (Entire dataset may now fit in
cache)!

–! Parallel code might look like…!

42!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Understand the Problem and Program!
•! (B) Calculate the numbers in a Fibonacci sequecne!

–! (Hint: Part of a project benchmark…)!

–! Fibonacci number defined by:!

•! F(n) = F(n-1) + F(n-2)!

–! Fibonacci series (1,1,2,3,5,8,13,21,…)!

–! This problem is non-parallelizable!!

•! Calculation of F(n) dependent on other calculations!

•! F(n-1) and F(n-2) cannot be calculated independently!

43!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Others issues programmer must consider!
•! Partitioning!

–! Domain Decomposition!

–! Functional Decomposition!

•! Communication Overhead!

•! Synchronization Overhead!

•! Load Balancing!

•! Remember: Could write very nicely parallelized code
but expected performance may not be delivered if you
don#t account for realistic implementation overheads!

44!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Coherence overhead: "
How Snooping Works!

45!

State Tag Data!

CPU!

Bus!

CPU references check cache
tags (as usual)!

Cache misses filled from
memory (as usual)!

! !+!
Other read/write on bus must
check tags, too, and possibly
invalidate!

Often 2 sets of tags…why?"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Will need to update/invalidate $ed data!

•! Assumes neither cache had value/location X in it 1st!

•! When 2nd miss by B occurs, CPU A responds with
value canceling response from memory.!

•! Update B#s cache & memory contents of X updated!

•! Typical and simple…!

Processor
Activity!

Bus Activity! Contents
of CPU A#s

cache!

Contents of
CPU B#s cache!

Contents of
memory

location X!

0!

CPU A reads X! Cache miss for X! 0! 0!

CPU B reads X! Cache miss for X! 0! 0! 0!

CPU A writes a
1 to X!

Invalidation for X! 1! 0!

CPU B reads X! Cache miss for X! 1! 1! 1!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

M(E)SI Snoopy Protocols for $ coherency!
•! State of block B in cache C can be!

–! Invalid: B is not cached in C!

•! To read or write, must make a request on the bus!

–! Modified: B is dirty in C!

•! C has the block, no other cache has the block, "
and C must update memory when it displaces B!

•! Can read or write B without going to the bus!

–! Shared: B is clean in C!

•! C has the block, other caches have the block, "
and C need not update memory when it displaces B!

•! Can read B without going to bus!

•! To write, must send an upgrade request to the bus!

–! Exclusive: B is exclusive to cache C!

•! Can help to eliminate bus traffic!

•! E state not absolutely necessary!

Board notes are a
good resource!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Cache to Cache transfers!
•! Problem!

–! P1 has block B in M state!

–! P2 wants to read B, puts a RdReq on bus!

–! If P1 does nothing, memory will supply the data to P2!

–! What does P1 do?!

•! Solution 1: abort/retry!
–! P1 cancels P2#s request, issues a write back!

–! P2 later retries RdReq and gets data from memory!

–! Too slow (two memory latencies to move data from P1 to P2)!

•! Solution 2: intervention!
–! P1 indicates it will supply the data (“intervention” bus signal)!

–! Memory sees that, does not supply the data, and waits for P1#s data!

–! P1 starts sending the data on the bus, memory is updated!

–! P2 snoops the transfer during the write-back and gets the block!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Shared Memory Performance!
•! Another “C” for cache misses!

–! Still have Compulsory, Capacity, Conflict!

–! Now have Coherence, too!
•! We had it in our cache and it was invalidated!

•! Two sources for coherence misses!

–! True sharing!
•! Different processors access the same data!

–! False sharing!
•! Different processors access different data,"

but they happen to be in the same block!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Communication NWs add real-life
overheads!

From Balfour, Dally, Supercomputing"

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

From Balfour, Dally, Supercomputing"

Overhead is function of traffic…!

