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Q1: D[8] = D[8] + RF[1] + RF[4]!
              …!

! !I[15]:  Add   R2, R1,  R4                           RF[1] = 4!

! !I[16]:  MOV R3, 8                                      RF[4] = 5!

! !I[17]:  Add   R2, R2, R3                            D[8] = 7!
              …!

(n+1) 

Fetch 

PC=15 

IR=xxxx 

(n+2) 

Decode 

PC=16 

IR=2214h 

(n+3) 

Execute 

PC=16 

IR=2214h 

RF[2]= 

     xxxxh 

(n+4) 

Fetch 

PC=16 

IR=2214h 

RF[2]= 

  0009h 

(n+5) 

Decode 

PC=17 

IR=0308h 

(n+6) 

Execute 

PC=17 

IR=0308h 

RF[3]= 

    xxxxh 

CLK 

(n+7) 

Fetch 

PC=17 

IR=0308h 

RF[3]= 

    0007h 

Clock cycles: "
Understand in multi-cycle, pipeline!
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Common (and good) performance metrics!
•! latency: response time, execution time !

–! good metric for fixed amount of work (minimize time)!

•! throughput: bandwidth, work per time, “performance”!

–! = (1 / latency) when there is NO OVERLAP !

–! > (1 / latency) when there is overlap !

•! in real processors there is always overlap!

–! good metric for fixed amount of time (maximize work)!

•! comparing performance !

–! A is N times faster than B if and only if: !

•! perf(A)/perf(B) = time(B)/time(A) = N !

–! A is X% faster than B if and only if:!

•! perf(A)/perf(B) = time(B)/time(A) = 1 + X/100!

10 time units!

Finish!
each!

time unit!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review!

Instruction!
Count!

Clock Cycle!
Time!

4!

CPU time (the “best” metric)!

•! We can see CPU performance dependent on:!

–! Clock rate, CPI, and instruction count!

•! CPU time is directly proportional to all 3:!

–! Therefore an x % improvement in any one variable leads 
to an x % improvement in CPU performance!

•! But, everything usually affects everything:!

Hardware!
Technology!

CPI!

Organization! ISAs!
Compiler 

Technology!
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Recap:  Pipelining improves throughput!

Inst. #! 1! 2! 3! 4! 5! 6! 7! 8!

Inst. i! IF! ID! EX! MEM! WB!

Inst. i+1! IF! ID! EX! MEM! WB!

Inst. i+2! IF! ID! EX! MEM! WB!

Inst. i+3! IF! ID! EX! MEM! WB!
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Recap:  pipeline math!
•! If times for all S stages are equal to T:!

–! Time for one initiation to complete still ST!

–! Time between 2 initiates = T not ST!

–! Initiations per second = 1/T!

•! Pipelining:  Overlap multiple executions of same 
sequence!

–! Improves THROUGHPUT, not the time to perform a 
single operation!

Time for N initiations to complete:  !NT + (S-1)T!

Throughput:  ! ! ! !Time per initiation = T + (S-1)T/N ! T!!

Key to improving performance:"

“parallel” execution"

University of Notre Dame!
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Recap:  Stalls and performance!
•! Stalls impede progress of a pipeline and result in 

deviation from 1 instruction executing/clock cycle!

•! Pipelining can be viewed to:!

–! Decrease CPI or clock cycle time for instruction!

–! Let#s see what affect stalls have on CPI…!

•! CPI pipelined =!

–! Ideal CPI + Pipeline stall cycles per instruction!

–! 1 + Pipeline stall cycles per instruction!

•! Ignoring overhead and assuming stages are balanced:!

•! If no stalls, speedup equal to # of pipeline stages in 
ideal case!

Stalls occur because of hazards!!

University of Notre Dame!
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Recap:  Structural hazards!
•! 1 way to avoid structural hazards is to duplicate 

resources!

–! i.e.:  An ALU to perform an arithmetic operation and an 
adder to increment PC!

•! If not all possible combinations of instructions can be 
executed, structural hazards occur!

•! Most common instances of structural hazards:!

–! When some resource not duplicated enough!

•! Pipeline stalls result of hazards, CPI increased from the 
usual “1”!
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Recap:  Data hazards!
•! These exist because of pipelining!

•! Why do they exist???!

–! Pipelining changes order or read/write accesses to 
operands!

–! Order differs from order seen by sequentially executing 
instructions on un-pipelined machine!

•! Consider this example:!

–! ADD R1, R2, R3!

–! SUB R4, R1, R5!

–! AND R6, R1, R7!

–! OR R8, R1, R9!

–! XOR R10, R1, R11!

All instructions after ADD use 

result of ADD "

ADD writes the register in WB 

but SUB needs it in ID."

This is a data hazard!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 10!

Recap:  Forwarding & data hazards!

•! Problem illustrated on previous slide can actually be solved 
relatively easily – with forwarding!

•! In this example, result of the ADD instruction not really needed 
until after ADD actually produces it!

•! Can we move the result from EX/MEM register to the beginning of 
ALU (where SUB needs it)?!

–! Yes!  Hence this slide!!

•! Generally speaking:!

–! Forwarding occurs when a result is passed directly to functional unit 
that requires it.!

–! Result goes from output of one unit to input of another!

University of Notre Dame!

CSE 30321 – Lecture 28/29 – Course Review! 11!

Recap:  HW change for forwarding!

University of Notre Dame!
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Recap:  Forwarding doesn#t always work!

A
L

U
!

Reg!IM! DM! Reg!

A
L

U
!

Reg!IM! DM!

A
L

U
!

Reg!IM!

Time!

LW R1, 0(R2)!

SUB R4, R1, R5!

AND R6, R1, R7!

OR R8, R1, R9! Reg!IM!

Can#t get data to subtract b/c result needed at beginning of!
CC #4, but not produced until end of CC #4.!

Load has a latency that!
forwarding can#t solve.!

Pipeline must stall until !
hazard cleared (starting !
with instruction that !
wants to use data until !
source produces it).!
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Recap:  Hazards vs. dependencies!
•! dependence: fixed property of instruction stream !

–! (i.e., program) !

•! hazard: property of program and processor 
organization !

–! implies potential for executing things in wrong order !

•! potential only exists if instructions can be simultaneously 
“in-flight” !

•! property of dynamic distance between instructions vs. 
pipeline depth !

•! For example, can have RAW dependence with or 
without hazard !

–! depends on pipeline !

University of Notre Dame!
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Branch/Control Hazards!
•! So far, we#ve limited discussion of hazards to:!

–! Arithmetic/logic operations!

–! Data transfers!

•! Also need to consider hazards involving branches:!

–! Example:!
•! 40: !beq !$1, $3, $28              # ($28 gives address 72)!

•! 44: !and !$12, $2, $5!

•! 48: !or !$13, $6, $2!

•! 52: !add !$14, $2, $2!

•! 72: !lw !$4, 50($7)!

•! How long will it take before the branch decision takes 
effect?!

–! What happens in the meantime?!
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A Branch Predictor!
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Is there a problem with DRAM?!
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Processor-Memory!
Performance Gap:"
grows 50% / year!
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“Moore#s Law”"

Processor-DRAM Memory Gap (latency)!

Why is this a problem?!
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Common memory hierarchy:!

17!

CPU Registers!
100s Bytes!
<10s ns!

Cache!
K Bytes!
10-100 ns!
1-0.1 cents/bit!

Main Memory!
M Bytes!
200ns- 500ns!
$.0001-.00001 cents /bit!

Disk!
G Bytes, 10 ms "
(10,000,000 ns)!
10-5 - 10-6  cents/bit!

Tape!
infinite!
sec-min!
10!-8!

Registers!

Cache!

Memory!

Disk!

Tape!

Upper Level!

Lower Level!

faster"

Larger"

University of Notre Dame!
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Average Memory Access Time!

•! Hit time:  basic time of every access.!

•! Hit rate (h): fraction of access that hit!

•! Miss penalty: extra time to fetch a block from lower 
level, including time to replace in CPU!

AMAT  =  HitTime  + (1 - h)  x  MissPenalty 

University of Notre Dame!
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Where can a block be placed in a cache?!

0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7"

Fully Associative! Direct Mapped! Set Associative!

Set 0!Set 1!Set 2!Set 3!

Block 12 can go!
anywhere!

Block 12 can go!
only into Block 4!

(12 mod 8)!

Block 12 can go!
anywhere in set 0!

(12 mod 4)!

0 1 2 3 4 5 6 7 8 ..."

Cache:!

Memory:! 12"

University of Notre Dame!
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How is a block found in the cache?!

•! Block offset field selects data from block!

–! (i.e. address of desired data within block)!

•! Index field selects a specific set!

•! Tag field is compared against it for a hit!

•! Could we compare on more of address than the tag?!

–! Not necessary; checking index is redundant!
•! Used to select set to be checked!

•! Ex.:  Address stored in set 0 must have 0 in index field!

–! Offset not necessary in comparison – entire block is 
present or not and all block offsets must match!

Block Address!

Tag! Index!

Block!
Offset!
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Which block should be replaced on a 
cache miss?!

•! If we look something up in cache and entry not there, 
generally want to get data from memory and put it in 
cache!

–! B/c principle of locality says we#ll probably use it again!

•! Direct mapped caches have 1 choice of what block to 
replace!

•! Fully associative or set associative offer more choices!

•! Usually 2 strategies:!

–! Random – pick any possible block and replace it!

–! LRU – stands for “Least Recently Used”!
•! Why not throw out the block not used for the longest time!

•! Usually approximated, not much better than random – i.e. 
5.18% vs. 5.69% for 16KB 2-way set associative!

University of Notre Dame!
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2nd-level caches!
•! Processor/memory performance gap makes us consider:!

–! If we should make caches faster to keep pace with CPUs!

–! If we should make caches larger to overcome widening 
gap between CPU and main memory!

•! One solution is to do both:!

–! Add another level of cache (L2) between the 1st level 
cache (L1) and main memory!

•! Ideally L1 will be fast enough to match the speed of the CPU 
while L2 will be large enough to reduce the penalty of going to 
main memory!

•! This will of course introduce a new definition for average 
memory access time:!

–! Hit timeL1 + Miss RateL1 * Miss PenaltyL1!

–! Where, Miss PenaltyL1 =!
•! Hit TimeL2 + Miss RateL2 * Miss PenaltyL2!

•! So 2nd level miss rate measure from 1st level cache misses…!

University of Notre Dame!
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Virtual Memory!
•! Some facts of computer life…!

–! Computers run lots of processes simultaneously!

–! No full address space of memory for each process!

•! Physical memory expensive and not dense - thus, too small!

–! Must share smaller amounts of physical memory among many 
processes!

•! Virtual memory is the answer!!

–! Divides physical memory into blocks, assigns them to different 
processes!

•! Compiler assigns data to a “virtual” address.  !

–! VA translated to a real/physical somewhere in memory!

•! Allows program to run anywhere; where is determined by a particular 
machine, OS!

University of Notre Dame!
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Translating 

VA to PA"

sort of like 
finding right"

cache entry 

with 

division of 

PA"
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Review: Address Translation!

Program Paging Main Memory 

Virtual Address 

Register 

Page Table 

Page 

Frame 

Offset 

P# 

Frame # 

Page Table Ptr 

Page # Offset Frame # Offset 

+ 
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Paging/VM!

CPU" 42" 356"

Physical"

Memory"

356"

page table"

i"

Operating"

System"

Disk 

Special-purpose cache for translations"

Historically called the TLB: Translation Lookaside Buffer"

Cache!"
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An example of a TLB!

Page frame addr."
Page"

Offset"
<30>" <13>"

V"

<1>"

Tag"

<30>"

Phys. Addr."

<21>"

...                      …"

1" 2"

32:1 Mux"

3"

4"

LRU "

<2>"

  D"

<1>"

…"

<21>"

<13>"

(Low-order 13"

bits of addr.)"

(High-order 21"

bits of addr.)"

34-bit"

physical"
address"

Read/write policies and permissions…"
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The “big picture” and TLBs!

Try to read"

from cache"

TLB access"Virtual Address"

TLB Hit?"

Write?"Try to read"

from page"

table"

Page fault?"

Replace"

page from"

disk"

TLB miss"

stall"

Set in TLB"

Cache hit?"

Cache miss"

stall"

Deliver data"

to CPU"

Cache/buffer"

memory write"

Yes"

Yes"

Yes"Yes"

No"

No" No"

No"
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MIMD Multiprocessors!

Centralized!

Shared!

Memory!

Note:  just 1 memory"
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MIMD Multiprocessors!

Distributed Memory!

Multiple, distributed memories here."
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Speedup"
metric for performance on latency-sensitive applications!

•! Time(1)  /  Time(P)    for P processors!

–!note: must use the best sequential algorithm for Time(1); 
the parallel algorithm may be different.!

1  2  4  8  16  32  64 

1
  
2
  
4
  
8
  
1
6
  
3
2
  
6
4
 

# processors 

sp
ee

d
u

p
 

“linear” speedup!
(ideal)!

typical: rolls off!
w/some # of!
processors!

occasionally see!
“superlinear”... why?!
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What if you write 
good code for 4-
core chip and then 

get an 8-core chip?!

Impediments to Parallel Performance!
•! Reliability:!

–! Want to achieve high “up time” – especially in non-CMPs!

•! Contention for access to shared resources!

–! i.e. multiple accesses to limited # of memory banks may 
dominate system scalability!

•! Programming languages, environments, & methods:!

–! Need simple semantics that can expose computational 
properties to be exploited by large-scale architectures!

•! Algorithms!

•! Cache coherency!
–! P1 writes, P2 can read!

•! Protocols can enable $ coherency but add overhead!

32!

! 

Speedup =
1

1-Fractionparallelizable[ ] +
Fractionparallelizable

N

Not all problems 
are parallelizable"
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Challenges:  Latency!
•! …is already a major source of performance degradation!

–! Architecture charged with hiding local latency!

•! (that#s why we talked about registers & caches)!

–! Hiding global latency is also task of programmer!

•! (I.e. manual resource allocation)!

•! Today:!

–! access to DRAM in 100s of CCs!

–! round trip remote access in 1000s of CCs!

–! multiple clock cycles to cross chip or to communicate 
from core-to-core!

•! Not “free” as we assumed in send-receive example from L27!

University of Notre Dame!
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Recap:  L24 – Parallel Processing on MC!
•! Simple quantitative examples on how (i) reliability, (ii) 

communication overhead, and (iii) load balancing 
impact performance of parallel systems!

•! Technology drive to multi-core computing!

34!

Why the clock flattening?  POWER!!!!!

University of Notre Dame!
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•! Processor complexity is good enough!
•! Transistor sizes can still scale!
•! Slow processors down to manage power!
•! Get performance from...!

Parallelism!

(i.e. 1 processor, 1 ns clock cycle!
vs.!

2 processors, 2 ns clock cycle)!

(Short term?) Solution!
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Processes vs. Threads!
•! Process!

–! Created by OS!

–! Much “overhead”!

•! Process ID!

•! Process group ID!

•! User ID!

•! Working directory!

•! Program instructions!

•! Registers!

•! Stack space!

•! Heap!

•! File descriptors!

•! Shared libraries!

•! Shared memory!

•! Semaphores, pipes, etc.!

•! Thread!

–! Can exist within process!

–! Shares process 
resources!

–! Duplicate bare 
essentials to execute 
code on chip!

•! Program counter!

•! Stack pointer!

•! Registers!

•! Scheduling priority!

•! Set of pending, blocked 
signals!

•! Thread specific data!

36!
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Multi-threading!
•! Idea:!

–! Performing multiple threads of execution in parallel!

•! Replicate registers, PC, etc.!

–! Fast switching between threads!

•! Flavors:!

–! Fine-grain multithreading!

•! Switch threads after each cycle!

•! Interleave instruction execution!

•! If one thread stalls, others are executed!

–! Coarse-grain multithreading!

•! Only switch on long stall (e.g., L2-cache miss)!

•! Simplifies hardware, but doesn#t hide short stalls!

–! (e.g., data hazards)!

–! SMT (Simultaneous Multi-Threading)!

•! Especially relevant for superscalar!

Parts C—F!
University of Notre Dame!
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Coarse MT vs. Fine MT vs. SMT!
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Mixed Models:!
•! Threaded systems and multi-threaded programs are 

not specific to multi-core chips.!

–! In other words, could imagine a multi-threaded uni-
processor too…!

•! However, could have an N-core chip where:!

–! … N threads of a single process are run on N cores!

–! … N processes run on N cores – and each core splits 
time between M threads!

39!
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GPUs!
•! GPU = Graphics Processing Unit!

–! Efficient at manipulating computer graphics!

–! Graphics accelerator uses custom HW that makes 
mathematical operations for graphics operations fast/efficient!

•! Why SIMD?  Do same thing to each pixel!

•! Often part of a heterogeneous system!

–! GPUs don#t do all things CPU does!

–! Good at some specific things!

•! i.e. matrix-vector operations!

•! GPU HW:!

–! No multi-level caches!

–! Hide memory latency with threads!

•! To process all pixel data!

–! GPU main memory oriented toward bandwidth!
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Parallel Programming!
•! To develop parallel software, must first understand if 

serial code can be parallelized…!

–! Consider 2 examples…!

•! (A)  Calculations on 2D array elements!

–! Computation on each array element independent from 
others!

•! Serial code:!

•! If calculation of elements is independent from one another, 
problem is “embarrassingly parallel”!

–! (usually computationally intensive)!

41!

for j =1:N!

  for i=1:N!

    a(i,j) = f(i,j)!
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Understand the Problem and Program!
–! Can distribute elements so 

each processor owns its own 
array (or subarray)!

•! This type of problem can lead to 
“superlinear” speedup!

–! (Entire dataset may now fit in 
cache)!

–! Parallel code might look like…!

42!
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Understand the Problem and Program!
•! (B) Calculate the numbers in a Fibonacci sequecne!

–! (Hint:  Part of a project benchmark…)!

–! Fibonacci number defined by:!

•! F(n) = F(n-1) + F(n-2)!

–! Fibonacci series (1,1,2,3,5,8,13,21,…)!

–! This problem is non-parallelizable!!

•! Calculation of F(n) dependent on other calculations!

•! F(n-1) and F(n-2) cannot be calculated independently!

43!
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Others issues programmer must consider!
•! Partitioning!

–! Domain Decomposition!

–! Functional Decomposition!

•! Communication Overhead!

•! Synchronization Overhead!

•! Load Balancing!

•! Remember:  Could write very nicely parallelized code 
but expected performance may not be delivered if you 
don#t account for realistic implementation overheads!

44!
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Coherence overhead:  "
How Snooping Works!

45!

State Tag     Data!

CPU!

Bus!

CPU references check cache 
tags (as usual)!

Cache misses filled from 
memory (as usual)!

! !+!
Other read/write on bus must 
check tags, too, and possibly 
invalidate!

Often 2 sets of tags…why?"
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Will need to update/invalidate $ed data!

•! Assumes neither cache had value/location X in it 1st!

•! When 2nd miss by B occurs, CPU A responds with 
value canceling response from memory.!

•! Update B#s cache & memory contents of X updated!

•! Typical and simple…!

Processor 
Activity!

Bus Activity! Contents 
of CPU A#s 

cache!

Contents of 
CPU B#s cache!

Contents of 
memory 

location X!

0!

CPU A reads X! Cache miss for X! 0! 0!

CPU B reads X! Cache miss for X! 0! 0! 0!

CPU A writes a 
1 to X!

Invalidation for X! 1! 0!

CPU B reads X! Cache miss for X! 1! 1! 1!
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M(E)SI Snoopy Protocols for $ coherency!
•! State of block B in cache C can be!

–! Invalid: B is not cached in C!

•! To read or write, must make a request on the bus!

–! Modified: B is dirty in C!

•! C has the block, no other cache has the block, "
and C must update memory when it displaces B!

•! Can read or write B without going to the bus!

–! Shared: B is clean in C!

•! C has the block, other caches have the block, "
and C need not update memory when it displaces B!

•! Can read B without going to bus!

•! To write, must send an upgrade request to the bus!

–! Exclusive:  B is exclusive to cache C!

•! Can help to eliminate bus traffic!

•! E state not absolutely necessary!

Board notes are a 
good resource!
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Cache to Cache transfers!
•! Problem!

–! P1 has block B in M state!

–! P2 wants to read B, puts a RdReq on bus!

–! If P1 does nothing, memory will supply the data to P2!

–! What does P1 do?!

•! Solution 1: abort/retry!
–! P1 cancels P2#s request, issues a write back!

–! P2 later retries RdReq and gets data from memory!

–! Too slow (two memory latencies to move data from P1 to P2)!

•! Solution 2: intervention!
–! P1 indicates it will supply the data (“intervention” bus signal)!

–! Memory sees that, does not supply the data, and waits for P1#s data!

–! P1 starts sending the data on the bus, memory is updated!

–! P2 snoops the transfer during the write-back and gets the block!
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Shared Memory Performance!
•! Another “C” for cache misses!

–! Still have Compulsory, Capacity, Conflict!

–! Now have Coherence, too!
•! We had it in our cache and it was invalidated!

•! Two sources for coherence misses!

–! True sharing!
•! Different processors access the same data!

–! False sharing!
•! Different processors access different data,"

but they happen to be in the same block!
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Communication NWs add real-life 
overheads!

From Balfour, Dally, Supercomputing"
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From Balfour, Dally, Supercomputing"

Overhead is function of traffic…!


