
University of Notre Dame!

CSE 30321 – One Big Take Away! 1!

If you haven"t done so already, do your CIF  !

Instructor Sec# Enroll Exam Date Start Time End Time Rooms Building

   C S E

   3 0 2 4 6

   Database Concepts

Bualuan, Ramzi Kamal 01 44 12/16/2010 8:00 AM 10:00 AM 125 DeBartolo Hall

   C S E

   3 0 3 2 1

   Computer Architecture I

Niemier, Michael Thaddeus 01 52 12/13/2010 10:30 AM 12:30 PM 127 Hayes-Healy Center

   C S E

   3 0 3 3 1

   Data Structures

Lichtenwalter, Ryan Nicholas 01 46 12/14/2010 10:30 AM 12:30 PM 126 DeBartolo Hall

   C S E

   4 0 1 1 3

   Design/Analysis of Algorithms

Chen, Danny Ziyi 01 42 12/14/2010 4:15 PM 6:15 PM 207 DeBartolo Hall

   C S E

   4 0 1 5 1

   Autom ID Techn - Iris Texture

Bowyer, Kevin W. 01 4 12/15/2010 10:30 AM 12:30 PM B011 DeBartolo Hall

   C S E

   4 0 2 4 4

   Introduction to System Admin.

Freeland, Joseph Curtis 01 21 12/16/2010 4:15 PM 6:15 PM 120 DeBartolo Hall

   C S E

   4 0 4 1 6

   System Interface Design

Striegel, Aaron 01 12 12/15/2010 8:00 AM 10:00 AM 125 DeBartolo Hall

   C S E

   4 0 4 6 2

   VLSI Circuit Design

Kogge, Peter Michael 01 3 12/13/2010 10:30 AM 12:30 PM 125 DeBartolo Hall

   C S E

   4 0 5 3 1

   Comp Biophysics & Systems Bio

Izaguirre, Jesus Antonio 01 1 12/13/2010 4:15 PM 6:15 PM 246 DeBartolo Hall

   C S E

   4 0 5 3 2

   Bioinformatics Computing

Emrich, Scott 01 2 12/17/2010 10:30 AM 12:30 PM B011 DeBartolo Hall

   C S E

   4 0 5 6 7

   Computer Security

Blanton, Marina 01 2 12/15/2010 10:30 AM 12:30 PM 232 DeBartolo Hall

Page : 34

Final!

Final is open book, open notes!

University of Notre Dame!

CSE 30321 – One Big Take Away! 2!

What to take away from last 4-5 lectures!

University of Notre Dame!

CSE 30321 – One Big Take Away!

Historical sources of performance gain!
•! Pipelining!

•! Technology Scaling!

•! Memory Hierarchies!

•! Hardware support for threads!

•! …!

•! All the easy stuff done!

–! (And to some extent being taken away!)!

3!

University of Notre Dame!

CSE 30321 – One Big Take Away!

Technology drive to multi-core computing!

4!

Why the clock flattening?  POWER!!!!!



University of Notre Dame!

CSE 30321 – One Big Take Away! 5!

•! Processor complexity is good enough!
•! Transistor sizes can still scale!
•! Slow processors down to manage power!
•! Get performance from...!

Parallelism!

(i.e. 1 processor, 1 ns clock cycle!
vs.!

2 processors, 2 ns clock cycle)!

The multi-core solution:!
Fundamentally, built 
on datapath, memory 

hierarchy discussed 
in class. 

University of Notre Dame!

CSE 30321 – One Big Take Away!

Would like to do deliver speedups 
equal to the number of cores!

•! Time(1)  /  Time(P)    for P processors!

–!note: must use the best sequential algorithm for Time(1); 
the parallel algorithm may be different.!

1  2  4  8  16  32  64 

1
  
2
  
4
  
8
  
1
6
  
3
2
  
6
4
 

# processors 

sp
ee

d
u

p
 

“linear” speedup!
(ideal)!

typical: rolls off!
w/some # of!
processors!

occasionally see!
“superlinear”... why?!

University of Notre Dame!

CSE 30321 – One Big Take Away! 7!

Could program P processors as if your off for a nice pleasant hike…!

But you should always be “bear aware”…!

What are 
“the bears”!

???!

University of Notre Dame!

CSE 30321 – One Big Take Away!

Impediments to Parallel Performance #
(independent of problem/algorithm itself)!

•! Contention for access to shared resources!

–! i.e. multiple accesses to limited # of memory banks or 
shared cache may dominate system scalability!

–! The interconnection network itself!

8!

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Packet Latency (cycles)

P
er

ce
n
ta

g
e 

o
f 

P
ac

k
et

s
Mean: 16.4

(a) CMeshX2

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Packet Latency (cycles)

P
er

ce
n
ta

g
e 

o
f 

P
ac

k
et

s

Mean: 19.8

(b) Torus

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Packet Latency (cycles)

P
er

ce
n
ta

g
e 

o
f 

P
ac

k
et

s

Mean: 22.2

(c) MeshX2

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Packet Latency (cycles)

P
er

ce
n

ta
g

e 
o

f 
P

ac
k

et
s

Mean: 29.6

(d) TTree

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Packet Latency (cycles)

P
er

ce
n

ta
g

e 
o

f 
P

ac
k

et
s

Mean: 24.4

(e) FTree

Figure 11: Workload Packet Latency Distribution for Uniform Random Traffic Pattern

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

Injection Rate [ packets per cycle ]

P
ac

k
et

 L
at

en
cy

 [
 c

y
cl

es
 ]

neighbortornado bitrev uniform taper

Figure 12: Offered Latency for CMeshX2 Network

width and results in long channels with significant traver-
sal costs. The power dissipated in the channels relative to
the bisection bandwidth is substantially greater in the tree
networks as a consequence of the wiring complexity and en-
suing area increase. The Torus network similarly suffers
from excess energy dissipation in the channels. The Torus
offers a compact layout but its average channel length is
long, spanning two tiles and the bypassed router in between.
The repeaters used to drive these long channels consume
more energy per length of wire driven than those used in
the CMeshX2 network, resulting in worse energy efficiency.
The mesh networks, which are commonly proposed archi-
tectures for on-chip networks, perform poorly and offer the
worst energy and area efficiency of all networks evaluated in
this study.

Figure 12 plots measured latencies against packet injec-
tion rate for the CMeshX2 network for different traffic pat-
terns. Measurements were taken using a uniform distribu-
tion of packet types. The curves effectively illustrate the
network’s ability to exploit locality in traffic flows to reduce
latency.

7.2 Network Costs
Figure 10(b) illustrates the contributions of the processor

tiles and network to the total die area. The channel compo-
nent includes area allocated for routing channels over what
might otherwise be unused die area. While the unused lower
metal layers and diffusion area could be partially reclaimed
for other purposes, the regions tend to be irregularly shaped
with frequent interruption by repeater arrays and are con-
sequently unsuitable for larger structures such as memories.

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

CMesh CMeshX2: Heterogeneous CMeshX2: Homogeneous

Long Packet Length / Channel Width

bitrev

neighbor

taper64

tornado

uniform

(a) Relative Workload Completion Time

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

CMesh CMeshX2: Heterogeneous CMeshX2: Homogeneous

Long Packet Length / Channel Width

Area-Delay

Energy-Delay

(b) Relative Efficiency

Figure 13: CMesh Performance

Figure 10(b) shows that the direct topologies and sparse in-
direct topology incur similar area costs. However, the direct
topologies afford wider datapaths by routing more channels
above processor tiles rather, which avoids dedicating addi-
tional area to routing channels around the die. The regular
planar structure of the direct networks renders them partic-
ularly amenable to compact layout and well suited to the
inherent structure of a tiled CMP. The area consumed by
the CMesh network is modest, contributing at most 23.6%
of the total die area with two parallel 288-bit datapaths to
as little as 8.4% with two parallel 64-bit datapath.

Figure 10(c) compares the power consumed by the net-
works, showing the contributions from the different data-
path components. The power consumed in the networks is
modest and would represent an acceptable component of the
total power dissipated by the chip. While the TTree network
dissipate slightly less power than the CMeshX2 network, the
later is simply more active and Figure 10(d) clearly illus-
trates that the CMeshX2 network is more energy efficient.

Cannot necessarily presume a uniform communication time form core-to-core!



University of Notre Dame!

CSE 30321 – One Big Take Away!

Impediments to Parallel Performance #
(independent of problem/algorithm itself)!

•! Latency!

–! Multiple clock cycles to cross chip or to communicate 
from core-to-core even in absence of contention!

9!

University of Notre Dame!

CSE 30321 – One Big Take Away!

Impediments to Parallel Performance #
(independent of problem/algorithm itself)!

•! Cache coherency!

–! P1 writes, P2 can read ! need consistent data!
•! Protocols can enable $ coherency but not free!

10!

State Tag     Data!

CPU!

Bus!

CPU references check cache 
tags (as usual)!

Cache misses filled from 
memory (as usual)!

! !+!
Other read/write on bus must 
check tags, too, and possibly 
invalidate!

University of Notre Dame!

CSE 30321 – One Big Take Away!

Impediments to Parallel Performance #
(independent of problem/algorithm itself)!

•! Programming languages, environments, & methods:!

–! Need simple semantics that can expose computational 
properties to be exploited by large-scale architectures!

11!

What if you write good code for a 4-core chip and then get an 8-core chip?!

•! i.e. tune code to deal with communication latencies, etc.!

University of Notre Dame!

CSE 30321 – One Big Take Away!

Impediments to Parallel Performance #
(independent of problem/algorithm itself)!

12!

! 

Speedup =
1

1-Fractionparallelizable[ ] +
Fractionparallelizable

N

•! All “bears” adversely affect Fractionparallelizable and hence speedup!
•! Should have quantitative sense of overhead when writing software!

•! Tricky because it can change from chip-to-chip!!



University of Notre Dame!

CSE 30321 – One Big Take Away! 13!

Parallel software… 

Computer Architecture… 

Can keep bears at bay, but 
need to think hard about how!

University of Notre Dame!

CSE 30321 – One Big Take Away!

We ran into a bear along the way…!

14!


