Rescheduling?

- Could we meet 2 days a week instead of 3 ?

Lecture 01

 Introduction to CSE 40547 / 60547

Binary Math

- How do computers add numbers?
- (binary arithmetic ... e.g. all 1 s and 0 s)
- What number (in decimal) is 110010 in binary?
- $1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
- $32+16+0+0+2+0=50$
- What is $110010+000011 ? \longrightarrow 110010$ $+\begin{array}{r}000011 \\ \hline 110101\end{array}$

$$
\begin{aligned}
& \text { - } 1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& \cdot 32+16+0+4+0+1=53
\end{aligned}
$$

- (multiplication works just like decimal multiplication)

$$
\text { - e.g. } \quad 0 \times 0=0 \quad 0 \times 1=0 \quad 1 \times 0=0 \quad 1 \times 1=1
$$

Can perform AND, OR ops with switches

Switch-level representation

With AND, OR, NOT, can implement any function.

University of Notre Dame

Switches now transistors on IC

Historically, this idea seems to have worked out rather well...

- Long since predominant mode of information processing
- Represent binary digits as on/off state of a current switch

Let's start with relay and vacuum tube machines ... ideas that evolved from this work still persist and influence work today

Linear Equation Solver
John Atanasoff, Iowa State University

1930's:

- Atanasoff built the Linear Equation Solver.
- It had 300 tubes!
- Special-purpose binary digital calculator
- Dynamic RAM (stored values on refreshed capacitors)

Application:

- Linear and Integral differential equations

Background:

- Vannevar Bush's Differential Analyzer
--- an analog computer
Technology:
- Tubes and Electromechanical relays

Atanasoff decided that the correct mode of computation was using electronic binary digits.

Electronic Numerical Integrator and Computer (ENIAC)

- Inspired by Atanasoff and Berry, Eckert and Mauchly designed and built ENIAC (1943-45) at the University of Pennsylvania
- The first, completely electronic, operational, general-purpose analytical calculator!
- 30 tons, 72 square meters, 200KW
- Performance
- Read in 120 cards per minute
- Addition took $200 \mu \mathrm{~s}$, Division 6 ms
- 1000 times faster than Mark I

WW-2 Effort

- Not very reliable!

Application: Ballistic calculations angle $=f$ (location, tail wind, cross wind air density, temperature, weight of shell, propellant charge, ...)

Electronic Discrete Variable Automatic Computer (EDVAC)

- ENIAC's programming system was external
- Sequences of instructions were executed independently of the results of the calculation
- Human intervention required to take instructior
- Eckert, Mauchly, John von Neumann an designed EDVAC (1944) to solve this pr
- Solution was the stored program computer \Rightarrow "program can be manipulated as

Stored Programs (Part 1)

First Draft of a Report
on the EDVAC
by
John von Neumann

Contract No. W-670-ORD-4926
Between the
United States Army Ordnance Department
and the
University of Pennsylvania

Moore School of Electrical Engineering
University of Pennsylvania
June 30, 1945

This idea has staying power!
How we process information hasn't changed much since 1930s and 1940s

Look familiar?

A hypothetical translation:

stored
program
becomes $\left\{\begin{array}{|l|l|l|l|l|}\hline \text { PC } & 110011 & 000001 & 000010 & 000011 \\ \hline \text { PC+1 } & 001110 & 000010 & 000001 & 000100 \\ \hline\end{array}\right.$

The IBM 650 (1953-4)

Programmer's view of the IBM 650

A drum machine with 44 instructions

Stored program model persists with device miniaturization

Computers in mid 50's

- Hardware was expensive
- Stores were small (1000 words)
\Rightarrow No resident system software!
- Memory access time was 10 to 50 times slower than the processor cycle
\Rightarrow Instruction execution time was totally dominated by the memory reference time.
- The ability to design complex control circuits to execute an instruction was the central design concern as opposed to the speed of decoding or an ALU operation
- Programmer's view of the machine was inseparable from the actual hardware implementation

1/19/2010
CS152, Spring 2010
IBM 360: A General-Purpose Register (GPR) Machine

- Processor State
- 16 General-Purpose 32-bit Registers
» may be used as index and base register
» Register 0 has some special properties
- 4 Floating Point 64-bit Registers
- A Program Status Word (PSW)
»PC, Condition codes, Control flags
- A 32-bit machine with 24-bit addresses
- But no instruction contains a 24-bit address!
- Data Formats
- 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

The IBM 360 is why bytes are 8-bits long today!

IBM 360: Initial Implementations

	Model 30 \ldots	Model 70
Storage	8 K -64 KB	$256 \mathrm{~K}-512 \mathrm{~KB}$
Datapath	8 -bit	64 -bit
Circuit Delay	30 nsec/level	5 nsec/level
Local Store	Main Store	Transistor Registers
Control Store	Read only 1 usec	Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the underlying technological differences between various models.
Milestone: The first true ISA designed as portable hardware-software interface!

With minor modifications it still survives today!

Spatially-programmed connection of processing elements

"Hardware" customized to specifics of problem.

Direct map of problem specific dataflow, control. Circuits "adapted" as problem requirements change.

One caveat to stored program model: Field Programmable Gate Arrays

What is Configurable Computing?
CSE 30321 - Lecture 01 - Introduction to CSE 40547

Spatial vs. Temporal Computing

Temporal

$$
\begin{aligned}
& t 1 \leftarrow x \\
& t 2 \leftarrow \mathbf{A} \times t 1 \\
& t 2 \leftarrow t 2+\mathbf{B} \\
& t 2 \leftarrow+2 \times t 1 \\
& y \leftarrow+\mathbf{+ 2}+\mathbf{C}
\end{aligned}
$$

Processor vs. FPGA Area

Remember this: We'll revisit this idea later in the semester!

Stored program model - in face of transistor scaling on integrated circuits - not without challenges

CMOS IC
\Rightarrow

Result: exponential transistor density increase...

Processor-DRAM Memory Gap (latency)

Challenge \#1:

 Memory is still (relatively) slow!Reme Computers in mid 50's

- Memory access time was 10 to 50 times slower than the processor cycle
\Rightarrow Instruction execution time was totally dominated by the memory reference time.

Solution: Memory Hierarchies

 (The principle of locality...)- ...says that most programs don't access all code or data uniformly
- i.e. in a loop, small subset of instructions might be executed over and over again...
- ...\& a block of memory addresses might be accessed sequentially...
- This has lead to "memory hierarchies"
- Some important things to note:
- Fast memory is expensive
- Levels of memory usually smaller/faster than previous
- Levels of memory usually "subset" one another
- All the stuff in a higher level is in some level below it

University of Notre Dame	
CSE 30321 - Lecture 01 - Introduction to CSE 40547	35

- How much of a chip is "memory"?
- 10\%
- 25\%
- 50\%
- 75\%
- 85\%

Some Perspective

An example memory hierarchy

University of Notre Dame	
CSE 30321 - Lecture 01 - Introduction to CSE 40547	36

DRAM vs. SRAM: Different Technology Processes

Moore's Law

- "Cramming more components onto integrated circuits."
- G.E. Moore, Electronics 1965
- Observation: DRAM transistor density doubles annually
- Became known as "Moore's Law"
- Actually, a bit off:
- Density doubles every 18 months (now more like 24)
- (in 1965 they only had 4 data points!)
- Corollaries:
- Cost per transistor halves annually (18 months)
- Power per transistor decreases with scaling
- Speed increases with scaling
- Of course, it depends on how small you try to make things " (I.e. no exponential lasts forever)

Challenge \#2: Chips have gotten hot!

University of Notre Dame

A bit on device performance...

- One way to think about switching time:
- Charge is carried by electrons
- Time for charge to cross channel = length/speed
- = $\mathrm{L}^{2} /\left(\mathrm{m} \mathrm{V}_{\mathrm{ds}}\right) \longleftarrow$ Thus, to make a device faster, we want to either increase $V_{\text {ds }}$ or decrease
- What about power (i.e. heat)? feature sizes (i.e. L)
- Dynamic power is: $\quad P_{d y n}=C_{L} V_{d d}{ }^{2} f_{0-1}$
- $C_{L}=\left(e_{o x} W L\right) / d$
$-e_{o x}=$ dielectric, WL = parallel plate area, $d=$ distance between gate and substrate

Summary of relationships

- (+) If V increases, speed (performance) increases
- (-) If V increases, power (heat) increases
- (+) If L decreases, speed (performance) increases
- (?) If L decreases, power (heat) does what?
- P could improve because of lower C
- P could increase because >> \# of devices switch
- \mathbf{P} could increase because \gg \# of devices switch faster!

Need to carefully consider tradeoffs between speed and heat

A funny thing happened on the way to 45 nm

```
-Speed increases with scaling...
```


2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at $3+\mathrm{GHz}$ in production.

A funny thing happened on the way to 45 nm
-Speed increases with scaling...
-Power decreases with scaling...
Why the clock flattening? POWER!!!!

A funny thing happened on the way to 45 nm

- What about scaling...
gate approaching dimensions that are just 1 atom thick!!! (Hurts reliability, charge leaks)

- - - - -

\qquad

Materials innovations were - and still are - needed
University of Notre Dame
CSE 30321 - Lecture 01 - Introduction to CSE 30321

One solution: new, high-к dielectrics

Small and Efficient

 As microprocessor transistors become smaller, stopping undesired current leakage becomes more difficult. This leakage leads to shortened battery life. Intel's coming chips use a new insulation material to prevent this, reducing power consumption.Current transistors use extremely New transistors use a hafniumCurrent transistors use extremely lead to current leakage. Thickening them decreases this leakage but reduces the electric charge passin through, impeding performance.
ased insulator and a metal gate electrode. Hafnium provides stronger electrical coupling, so the insulator can be made thicker to reduce leakage without degrading the performance of the transistor.

University of Notre Dame

Another solution: parallelism

High art meets high-tech.

Top 5 Must-Heves

Antum tran pron wea

 \square hiverever

- Processor complexity is good enough
- Transistor sizes can still scale
- Slow processors down to manage power
- Get performance from...

Parallelism

Top 5 Must-Haves
\square POWERFUL PROCESSOR
A portrait of perfiormance. "My generative portraits are demanding on the processors in my laptop, as they continuously manipulate video." says Lincoln. Thankfully, the dual-core performance of Intel Centrino processor technology can hande intensive tasks with flying colors.

(i.e. 1 processor, 1 ns clock cycle

 vs.2 processors, 2 ns clock cycle)

Even solutions have limitations

Impact of modern processing principles

 (Lots of "state")- User:
- state used for application execution
- Supervisor:
- state used to manage user state
- Machine:
- state that configures the system Lots of "state" - but how much is directly associated with a computation?

More caching?

(What about "state bloat"?)

What if you want to add
2, 32-bit numbers together?

- Transient:
- state used during instruction execution
- Access-Enhancing:
- state used to simplify translation of other state names
- Latency-Enhancing:
- state used to reduce latency to other state values

University of Notre Dame
CSE 30321 - Lecture 01 - Introduction to CSE 30321
Impact of modern processing principles
(Total State vs. Time)

University of Notre Dame, Department of Computer Science \& Engineering
CSE 30321 - Lecture 01 - Introduction to CSE 40547
Impact of modern processing principles
(Why so much latency enhancing state?)

More cores?

University of Notre Dame

Impediments to Parallel Performance

\star Contention for access to shared resources

- i.e. multiple accesses to limited \# of memory banks may dominate system scalability
* Programming languages, environments, \& methods:
- Need simple semantics that can expose computational properties to be exploited by large-scale architectures
Algorithms
- What if you write good code for a 4-core chip, and then get an 8-core chip?
* Cache coherency
- P1 writes, P2 can read
- Protocols can enable \$ coherency but add overhead

This idea has been extended...
Quad core chips...
7,8 , and 9 core chips...

Practical problems must be addressed!

Advances in parallel programming are necessary! stop?

Impediments to Parallel Performance

- Latency t
- Is already a major source of performance degradation
- Architecture charged with hiding local latency
- (that's why we talked about registers \& caches)
- Hiding global latency is also task of programmer
- (I.e. manual resource allocation)
- Today:
- access to DRAM in 100s of CCs
- round trip remote access in 1000s of CCs
- multiple clock cycles to cross chip or to communicate from core-to-core
- Not "free"

Overhead where no actual processing is done.
Overhead where no actual processing is done.

Pentium III Die Photo

Deterministic connections as needed.

1st Pentium III, Katmai: 9.5 M transistors, 12.3 * 10.4 mm in $0.25-\mathrm{mi}$. with 5 layers of aluminum

- EBL/BBL - Bus logic, Front, Back
- MOB - Memory Order Buffer
- Packed FPU - MMX FI. Pt. (SSE)
- IEU - Integer Execution Unit
- FAU - FI. Pt. Arithmetic Unit
- MIU - Memory Interface Unit
- DCU - Data Cache Unit
- PMH - Page Miss Handler
- DTLB - Data TLB
- BAC - Branch Address Calculator
- RAT - Register Alias Table
- SIMD - Packed FI. Pt.
- RS - Reservation Station
- BTB - Branch Target Buffer
- IFU - Instruction Fetch Unit (+I\$)
- ID - Instruction Decode
- ROB - Reorder Buffer
- MS - Micro-instruction Sequencer

Recent multi-core die photos
(Route packets, not wires?)

Impediments to Parallel Performance

- All $\boldsymbol{\lambda}$ 'ed items also affect Fraction ${ }_{\text {parallelizable }}$
- (and hence speedup)
Speedup $=\frac{1}{\left[1-\text { Fraction }_{\text {parallelizable }}\right]+\frac{\text { Fraction }_{\text {parallelizable }}}{N}}$

CSE 30321 - Lecture 01 - Introduction to CSE 30321

Some Perspective...

- "For a 60-nanometer process a signal can reach only 5% of the die's length in a clock cycle" [D. Matze (Texas Instruments), IEEB Computer Sept. 9]]
- Shift from function-centric to communication-centric design

Multi-core only as good as algorithms

 that use it

Summary

- Now:
- Devices get smaller, but also run slower!
- Performance comes from parallelism
- But to parallelize, need new algorithms, software support
- Also must overcome non-parallelizable overheads that degrade performance
- Low hanging fruit very much gone
- New logic (and memory!) devices that (a) don't have same inherent problems as switch-based logic and/or (b) enable new system architectures are sought...

Summary

- For many years, could double performance just by making device smaller
- Clock rates increased with manageable power impact

Motivating example 1

- Brain-inspired computation:

- New, memristive devices may enable neuromorphic computer architectures...

Most complex information-management system in the universe...

Dell 8250 (Pentium® 4)		Brain
Mass	$\sim 25 \mathrm{~kg}$	1.4 kg
Volume	$34200 \mathrm{~cm}^{3}$	$1350 \mathrm{~cm}^{3}$
MIPS	$\sim 10^{3} \mathrm{MIPS}$	10^{8} MIPS
BIT	$<10^{16} \mathrm{bit} / \mathrm{s}$	$10^{19} \mathrm{bit} / \mathrm{s}$
Power	200 W	30 W (max)
	~ 5 MIPS/W	3×10^{6} MIPS/W
	$5 \times 10^{6} \mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{bit}$	$700 \mathrm{k}_{\mathrm{B}}$ T/bit

A CMOS machine

 at the limits of scaling would use prodigious amounts of powerWhen will computer hardware match the

Example 3: Universal memories

Tunneling Magnetoresistance

Example 2: Back to relays???

Mechanical Computing Redux:
Relays for Integrated
Circuit Applications

(a)

(b)

Possible advantages: no leakage, programmable,
University of Notre Dame

Where We' re At

1. CMOS is a hard act to follow! None of the proposed post-CMOS switch candidates appear to be "drop-in" replacements.
2. Electron/charge state variables so far superior to alternatives. Not necessarily the best, if better architectures are developed.

Where We' re Headed			Analog for example...
Device Proposals			
New Switch Research			
X Workshop		New Switch-Industry Deployment	
2009	2010	2015	2020

- MIND Workshop on Architectures for New Devices 08/2009
- Monthly Center Chief Operating Officer coordination
- NRI / MIND Read-outs for member companies

Now, onto the syllabus...

