Lecture 01

FET review (part 1)

Specific topics include PN junctions, basic transistor structure, (transistor) modes of operation, first order I_{ds} models, an initial discussion of scaling models

(Some slides based on lecture notes by David Harris)

How we'll evaluate / study new devices

- Main goal:
 - Applications are generally executed by some technology "on chip"
 - Chips are usually comprised of different functional units
 - Functional units are made up of different sub circuits
 - Circuits are made up of devices

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 40547

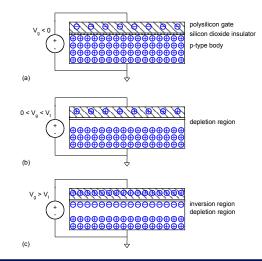
How we'll evaluate / study new devices

- Generally, given the above, we'll work backwards.
 - In other words, we'll start with the device and try to answer the following questions:
 - How does the device work?
 - How does it represent a 1 or 0?
 - · How fast does the device switch between states?
 - · How much energy is associated with switching?
 - · How reliable is it?
 - How does 1 device interact with another? (e.g. how devices interconnected?)
 - What's the fundamental logic function the device supports? (What does transistor-based computation support well? AND/ OR? Inversion? XOR?)

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 40547

How we'll evaluate / study new devices

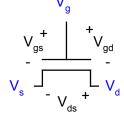

 Once we can answer these questions we can extrapolate device-level performance, to circuit performance, etc.

Outline for Lecture 02

- (Board)
 - Review of PN junctions
 - Important not only for transistors, but other devices studied in class too
- (Board + Slides)
 - Review of basic transistor structures
 - Review of basic modes of operation
 - Review of I_{ds} associated with given mode of operation
- (Board)
 - Impact of scaling on I_{ds}, other parameters...
 - ...and the net effect on systems

MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes

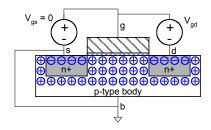


University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 40547

Terminal Voltages

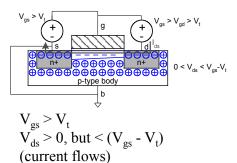
- Mode of operation depends on V_g , V_d , V_s
 - V_{gs} = V_g V_s
 - $-V_{gd} = V_g V_d$
 - $-V_{ds} = V_d V_s = V_{gs} V_{gd}$
- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation

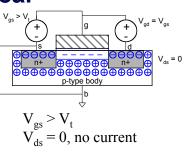


CSE 30321 - Lecture 01 - Introduction to CSE 40547

nMOS Cutoff

• No channel formed, so no current flows

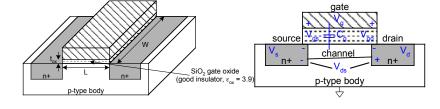

• $I_{ds} = 0$



CSE 30321 - Lecture 01 - Introduction to CSE 40547

nMOS Linear

- Channel forms •
- Current flows from d to s • - e⁻ from s to d
- I_{ds} increases with V_{ds} ٠
- Similar to linear resistor •



- **I-V Characteristics**
- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

University of Notre Dame	University of Notre Dame		
CSE 30321 - Lecture 01 - Introduction to CSE 40547 11	CSE 30321 - Lecture 01 - Introduction to CSE 40547 1		
$\begin{array}{l} \textbf{Channel Charge}\\ \textbf{MOS structure looks like parallel plate capacitor while operating in inversion}\\ \textbf{- Gate - oxide - channel}\\ \textbf{Q}_{channel} = CV\\ \textbf{C} = \textbf{C}_g = \varepsilon_{ox} \textbf{WL}/t_{ox} = \textbf{C}_{ox} \textbf{WL}\\ \textbf{V} = \textbf{V}_{gc} - \textbf{V}_t = (\textbf{V}_{gs} - \textbf{V}_{ds}/2) - \textbf{V}_t\\ \textbf{C}_{ox} = \varepsilon_{ox} / t_{ox} \end{array}$	 Carrier velocity Charge is carried by e- Carrier velocity <i>v</i> proportional to lateral E-field between source and drain <i>v</i> = μE μ called mobility E = V_{ds}/L Time for carrier to cross channel: - t = L/v 		
$O_{ox} - \varepsilon_{ox} / \tau_{ox}$	-t = L/v		

- μ is *mobility* \rightarrow a way to quantify electron velocity and a complex function of crystal structure, local field, etc.
 - People are looking for ways to improve (HW 1)

10

nMOS Linear I-V

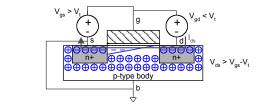
Now we know •

•

٠

- How much charge Q_{channel} is in the channel
- How much time *t* each carrier takes to cross

$$\begin{aligned} \hat{U}_{ds} &= \frac{Q_{\text{channel}}}{t} \\ &= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \\ &= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \beta = \mu C_{\text{ox}} \frac{W}{2} \end{aligned}$$


nMOS Saturation

Channel pinches off

13

15

- I_{ds} independent of V_{ds}
- We say current saturates
- Similar to current source

 $V_{ds} > V_{as} - V_t$

- Essentially, voltage difference over induced channel fixed at $V_{\alpha s} V_t$
- (current flows, but saturates)
- (or i_{ds} no longer a function of V_{ds})

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 40547

nMOS I-V Summary

Shockley 1st order transistor models •

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturative} \end{cases}$$

$$V_{ds} > V_{dsat}$$
 saturation

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \beta = \mu C_{ox} \frac{M}{2}$$

University of Notre Dame

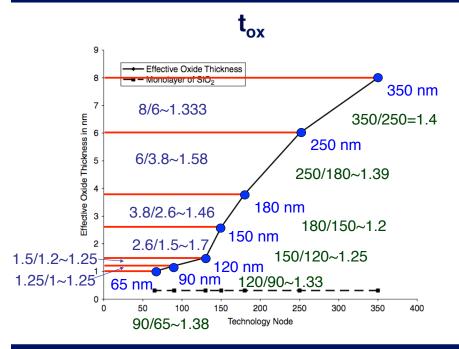
CSE 30321 - Lecture 01 - Introduction to CSE 40547

nMOS Saturation I-V

If $V_{ad} < V_t$, channel pinches off near drain

 $I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$

Now drain voltage no longer increases current


- When $V_{ds} > V_{dsat} = V_{qs} - V_t$

 $=\frac{\beta}{2}\left(V_{gs}-V_{t}\right)^{2}$

17

Scaling models

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
W, L, t _{ox}		1/5	1/5	1/5
V_{dd}, V_{t}		1/5	1/U	1
N _{SUB}	V/W _{depl} ²	S	S²/U	S ²
Area/device	WL	1/S ²	1/S ²	1/S ²
C _{ox}	1/t _{ox}	S	S	S
\mathcal{C}_{gate}	C₀ _∞ WL	1/5	1/5	1/5
$\mathbf{k}_{n}, \mathbf{k}_{p}$	C _{o×} W/L	S	S	S
I _{sat}	C _{ox} WV	1/5	1/U	1
Current Density	I _{sat} /Area	S	S²/U	S ²
R _{on}	V/I _{sat}	1	1	1
Intrinsic Delay	R _{on} C _{gate}	1/5	1/5	1/5
Ρ	I _{sat} V	1/S ²	1/U ²	1
Power Density	P/Area	1	S ^{2/} U ²	S ²

University of Notre Dame

University of Notre Dame