Lecture 04 – CSE 40547/60547 – Computing at the Nanoscale – Interconnect

Introduction

- So far, have considered transistor-based logic in the face of technology scaling
- Interconnect effects are also of concern
 - o Can impact speed
 - o Can significantly impact energy consumption in a digital integrated circuit
 - (Can also think of in terms of clock distribution network for example)
- Aggregate effects of interconnect can be even worse because larger die sizes exacerbate the above problems

Interconnect Parasitics

- Wiring of today's on-chip interconnect (IC) gives rise to:
 - Capacitive parasitics
 - Resistive parasitics
 - o Inductive parasitics
- All parasitics:
 - o Can cause increase in propagation delay
 - o Can adversely impact energy dissipation and power distribution
 - o Can introduce extra noise sources which effect reliability
- This is a hard problem to model interconnect is everywhere so places all over the chip are sources of the aforementioned problems; from modeling perspective, simplifications could be considered for example:
 - Ignore inductive effects if resistance R of wire is high (i.e. the wire is long or has a small cross section) OR rise and fall times are low
 - If the wire is short OR the cross-section is high OR IC material has low resistivity, one might only use a capacitive model
 - o If separation between neighboring wires is high, could ignore inter-wire capacitances

Capacitance:

Picture: wire-to-substrate and wire-to-wire capacitances

Wire-to-substrate:

$$C = \frac{\varepsilon_{di}}{t_{di}} WL$$

 $C = \frac{\varepsilon_{di}}{A} HL$

Wire-to-wire:

Resistance:

The resistance of a wire is proportional to its length L and inversely proportional to its cross-sectional area A

$$R = \frac{\rho L}{WH}$$

- \circ ρ is the resistivity of the wire in Ω meters; example values include:
 - Cu: $1.7 \times 10^{-8} \Omega$ meters
 - AI: 2.7 x 10⁻⁸ Ω meters
- Transitions between routing layers (through vias) can result in additional resistance
 - Slide: Metal layers
 - This resistance can be reduced by increasing via size
 - But, current can crowd around the perimeter of the via; this effect can eventually reduce the effectiveness of this design technique
 - Example point of reference:
 - In 250 nm technology, AL contacts ~ 5-20 Ω for metal to poly and 1-5 Ω for metal-tometal
 - Quantitative Example:
 - CMOS, Nanomagnetic Logic clock

Inductance:

- Effects, consequences include: noise, reflections, inductive coupling
- Changing current passing through an inductor generates a voltage drop: $\Delta V = L \frac{di}{dt}$

Interconnect in the face of device scaling

- If transistor-based logic scales, interconnect must scale too
- Let's consider a transistor-like IC scaling model:
 - Could start with an ideal scaling factor S (as before), but length does not scale well
- Generally speaking:
 - Local IC scales with transistors
 - <u>Global IC</u> does not scale well
 - Global IC includes connectivity between large modules, I/O, the clock distribution network, etc.
 - As transistor sizes scale, the clock goes to more transistors
 - Another complication (was) die size ... was increasing ~6% per year and now 2X per decade
 - Has slowed down. Any thoughts as to why?

- In scaling models, must differentiate between local and global wires; gives rise to 3 scaling models:
 - 1. Local wires:
- $S_{L} = S > 1$
- 2. Constant length wires:
- $S_L = 1$
- 3. Global wires: $S_L = S_c < 1$

(of course, < 1 means that global wires do not scale well)

- A first order approximation of scaling

Parameter	Relation	Local	Constant	Global	
W, H, t		1/S	1/S	1/S	
L		1/S	1	1/S _c	
С	LW/t	1/S	1	1/S _c	
R	L/WH	S	S ²	S ² / S _c	
RC	L ² /Ht	1	S ²	S^2/S_c^2	

See slides + note my board comments

- Take aways:
 - Technology scaling does not reduce wire delay (see RC time constant)
 - Constant delay predicted for local wires
 - Delay of global wires increases
 - More logic, more capacitance, more layers of metal, necessary smaller geometries
 - No perfect solutions; for example:
 - Try to scale wire thicknesses at different rates
 - To improve delay, helps to keep R down, therefore make W x H as large as possible aim for high aspect ratio as this also improves packing density
 - However, helps performance, hurts capacitance

Industry Outlook from ITRS:

- Industry very concerned with power
 - Added metric of (Watts per GHz of frequency) / cm²
- Some predict this metric will plateau as technology scales
 - o Advent of new materials, low k dielectrics will help
 - History here ... there was an Al \rightarrow Cu transition owing to the lower ρ of copper compared to Al • However, not many material lower than Cu – Ag (1.59 x 10⁻⁸ Ω m)?
 - However, not many material lower than $Cu = Ag (1.59 \times 10^{\circ} \Omega m)$
- Also, problems could get worse
 - \circ The number of metal layers has increased as technology scales (see slides)
 - Therefore, volume, capacitance of IC could increase
- Alternative technologies being investigated and will be discussed:
 - RF, optical, CNTs, 3D...

Recap:

(First, quick review of EDP, PDF performance metrics – from Lecture 03)

Dynamic power:

- Energy stored on capacitor:

$$E_{C} = \int_{0}^{\infty} i_{Vdd}(t) V_{out}(dt) = V_{dd} \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} V_{out} = C_{L} \int_{0}^{V_{dd}} V_{out} dv_{out} = \frac{C_{L} V_{dd}^{2}}{2}$$

- Power dissipation – from charging, discharging capacitor $P_{dyn} = C_L V_{\rm \tiny dd}^2 f$

Direct path power:

- Direct path energy a function of the time that both NMOS, PMOS devices are conducting: $F = -V \frac{i_{peak}t_{sc}}{i_{peak}t_{sc}} + V \frac{i_{peak}t_{sc}}{i_{peak}t_{sc}} - V \quad i = t$

$$E_{\text{direct path}} = V_{dd} \frac{l_{peak} l_{sc}}{2} + V_{dd} \frac{l_{peak} l_{sc}}{2} = V_{dd} i_{peak} t_{sc}$$

- Therefore the power dissipation associated with direct path currents is given by: $P_{\text{direct path}} = V_{dd}i_{peak}t_{sc}f \qquad \left(=C_{sc}V_{dd}^2f\right)$

Leakage power:

Sub-threshold Leakage:
$$I_{sub} = K_1 W e^{\frac{-V_1}{nV_o}} (1 - e^{\frac{-V}{V_o}})$$

$$I_{ox} = K_2 W \left(\frac{V}{t_{ox}}\right)^2 \left(e^{\frac{-\alpha t_o}{V}}\right)$$

)

Gate Leakage:

<u>To summarize</u>...

$$P_{total} = P_{dynamic} + P_{directpath} + P_{static} = (C_L V_{dd}^2 + V_{dd} I_{peak} t_{sc}) f + V_{dd} I_{leak}$$

What if we consider all of the above "simultaneously"?

- 1. If W, L decrease, (a) latency, (b) dynamic power, (c) density all improve.
 - a. Not so easy to make W, L smaller
 - i. Photolithography has some fundamental limitations (wavelength of UV light = 250 nm)
 - ii. New candidates for further transistor scaling include EUV, imprint
 - iii. The wavelength of light is what it is.

This challenge has (so far) been met

- b. t_{ox} must scale as well
 - i. Layers less than 4 atoms thick difficult to reliably manufacture
 - ii. With thin layers, electrons tunnel and get gate leakage current that results in static power dissipation

Need new material - and one was found that enabled the 45 nm technology node

c. As device dimensions scale down, lithography is less precise - results in an increase in defects

- i. Must scrap die
- ii. Or find architectural alternatives such that we can live with defects
- 2. If V_{dd} decreases, power decreases
 - a. Decreasing V_{dd} is the best way to lower P given the quadratic dependence on V_{dd}
 - b. Problems:
 - i. V already ~0.9V 1V
 - ii. Could realistically go to ~0.5V
 - iii. Noise, other sources become issues
 - c. Also, need to lower V_t
 - i. If V_{dd} reduced to 0.5V, only 0.5V between logic '1' and logic '0' (i.e. smaller margins)
 - ii. Also, V_t determined (in part) by the number of atoms / concentration of dopant atoms; as feature size decreases, dopant concentration can experience "wide" swings
 - iii. If Vt varies between 0.1 and 0.3 C, could be problematic
 - d. Oh, and performance decreases too
- 3. If V_{dd} increases, *f* goes up (but P_{dyn} goes up in 2 ways Vdd, *f*)
- 4. Lest we forget, a decrease in W, L = an increase in the net number of devices
- 5. Up against practical limits
 - a. Could deal with >> 100 W / $cm^2 \rightarrow$ not an engineering problem
 - b. Instead, it's a practical problem \rightarrow 100 W/cm² = practical limit of air cooling

(A big) solution to the issues outlined above is multi-core chips – let's look at how they are affected by ... *interconnect*

- Discussion based on "Design Tradeoffs for Tiled CMP On-Chip Networks" by Balfour and Dally
 Supercomputing 2007
- Design issues brought up here equally relevant to other emerging technologies too...

Consider the following "sea" of processor cores:

- Router has 2 main components:
 - 1. Datapath:
 - Handles storage and movement of a packet's payload
 - o Consists of input buffers, switch, & output buffers
 - 2. Control
 - o Logic to coordinate packet resource allocation
- I'm going to talk about a "Virtual Channel Router"
 - Virtual channel router requires extra resources (HW), but can help overcome blocking issues
 - (Might see blocking issues with wormhole routing)
 - (VC allows packets to pass a blocked packet and make better use of idle bandwidth)

Example:

- 1. Packet B enters node #1 from the network; B acquires channel p from node #1 \rightarrow node #2
- 2. A 2nd packet A has entered node #1 from the wst and needs to be routed east to node #3
- 3. Meanwhile, B wants to leave node #2 and go south, but is blocked
- 4. Now channels p and q are idle .. but cannot be used
 - a. Packet A is blocked in node #1
 - b. It cannot acquire channel *p*
 - c. B blocks

Figure: Packet Routing

Now, assume 2 VCs per physical channel:

- 1. B arrives at node #1 and acquires the bandwidth to go to channel p
- 2. A arrives from the east, B tries to leave node #2 and is blocked
- 3. A can use free bandwidth *p* and goto another VC on node #2
- 4. Can also proceed onto node #3

This is a better use of resources

- May have 1 physical channel, but more buffers

What happens during packet routing?

- 1. Let's start with a flit of a packet arriving at the input unit of a router
 - Input unit consists of a flit buffers to hold arriving flits until they can be forwarded
 - o Input unit also maintains state of virtual channel
 - i. I: Idle
 - ii. R: Routing
 - iii. V: Waiting for virtual channel
 - iv. A: Active
 - $\circ~$ Once packet in router, heed to perform route computation to see where it goes; can then go to VC for allocation
- 2. Each head flit must advance through 4 stages of routing computation
 - It's pipelined! Assume...
 - RC: Routing Computation
 - VA: Virtual Channel Allocation
 - SA: Switch Allocation
 - ST: Switch Traversal

0

• Packet might move through like this:

	1	2	3	4	5	6	7
Head Flit	RC	VA	SA	ST			
Body Flit 1		**		SA	ST		
Body Flit 2					SA	ST	
Tail Flit						SA	ST

• ** (second body flit arrives)

Important Points:

- \circ t_r (time through a single router) does not equal 1!
 - (more like 5 or 6 at least)
- o Routing and VC allocation are per packet functions
 - Nothing for body flits to do
 - With no stalls, need 3 input buffers (for 3 flits)
 - With stalls, need # of buffers = # of packets

Outlook:

- Ultimately, issues involved in routing process discussed above + router architecture + storage needed determine the bandwidth for the topology
 - Possibilities:
 - Even though you can devise a topology for ideal performance, it may not be feasible to implement
 - Or, 1 part may be technologically feasible (pitch) but another may not be (router or buffer)

Why can routers be hard to implement?

Figure: Possible router design in 8 metal layer chip

Consider how connections would actually be made on chip:

- Discuss metal stack
- Show cross-sectional die photo
- Draw lines for input and output

Now, let's go back to our picture and made some observations:

- 1. No lines of the same color can touch (it would be an electrical short)
- 2. We draw 1 line, but really many (1 line for each bit)
- 3. Router areas are by no means insignificant!

How can on-chip IC NWs affect performance?

Want to know – for a given IC NW topology – how long it takes to send a message:

- Note \rightarrow initial #s in the *absence* of contention \rightarrow a bit more on this later
- Time: (# of hops) x (time in router) + time required for packet to traverse *all* channels + serialization latency

(serialization latency = ceiling(length of message / bandwidth))

Therefore, if:

-	Average # of hops	= 6.25
-	Average time for packet to traverse all channels	= 5.3333
-	Serialization latency	= 3
-	Time in router	= 2
-	Total time:	=~20.8

Slides:

- Results from Dally, Balfour paper
- Impact in the context of Amdahl's Law
- Information processing tokens