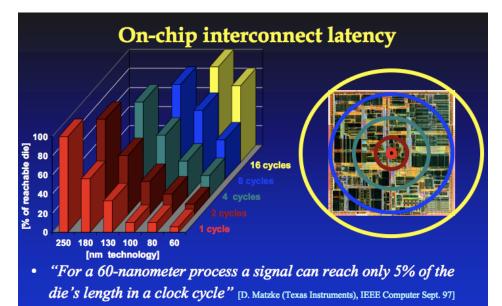

Lecture 04 Interconnect Overhead


Specific topics include a short review of logic scaling, the impact of technology scaling on interconnect, how interconnect scaling impacts the current solution to problems associated with logic scaling (multi-core architectures), and information processing "tokens"

Background Slides

University of Notre Dame

University of Notre Dame

• Shift from function-centric to communication-centric design

University of Notre Dame

CSE 30321 - Lecture 04 - Interconnect Overhead

NW topologies

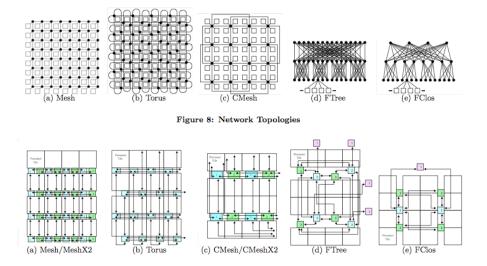
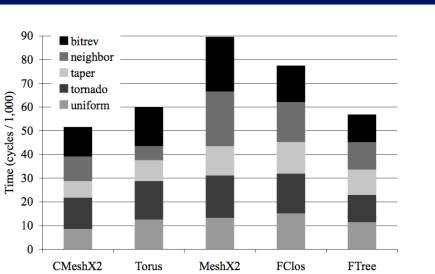


Figure 9: Placement of Routers used to Estimate Area (Lower Left Quadrant)

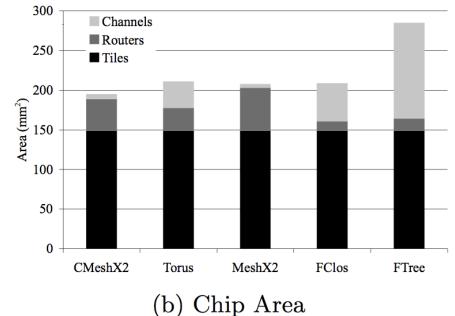
From Balfour, Dally, Supercomputing

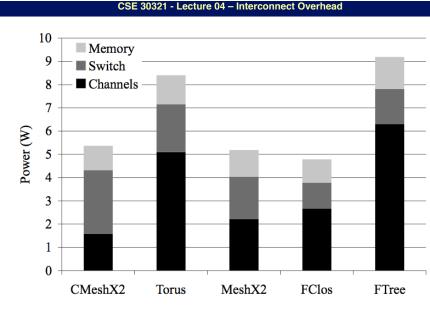
Dally Paper Slides


University of Notre Dame

CSE 30321 - Lecture 04 - Interconnect Overhead

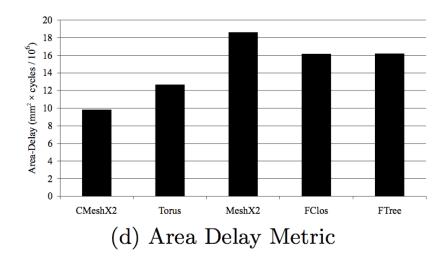
Preferred NW configurations


Table 3: Preferred Network Configurations

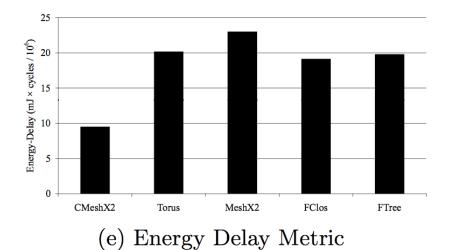

	H	$t_{ m r}$	$B_{ m C}$	w	$B_{ m B}$	$T_{ m c}$	T_s	T_0
Mesh	$6\frac{1}{4}$	2	16	192	3,072	5.3	3	17.8
MeshX2	$6\frac{1}{4}$	2	32	192	$6,\!144$	5.3	3	17.8
Torus	5^{-}	2	32	288	9,216	4.0	2	14.0
CMesh	$3\frac{1}{8}$	3	16	288	$4,\!608$	2.1	2	11.5
CMeshX2	$3\frac{1}{8}$	3	32	288	9,216	2.1	2	11.5
FTree	$4\frac{3}{8}$	2	64	144	9,216	4.4	4	13.1
FClos	$4\frac{3}{8}$	2	32	144	4,608	3.5	4	12.2

(a) Completion Time by Pattern

University of Notre Dame



(c) Network Power Dissipation



CSE 30321 - Lecture 04 – Interconnect Overhead

CSE 30321 - Lecture 04 – Interconnect Overhead

From Balfour, Dally, Supercomputing

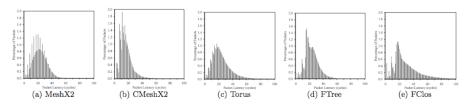
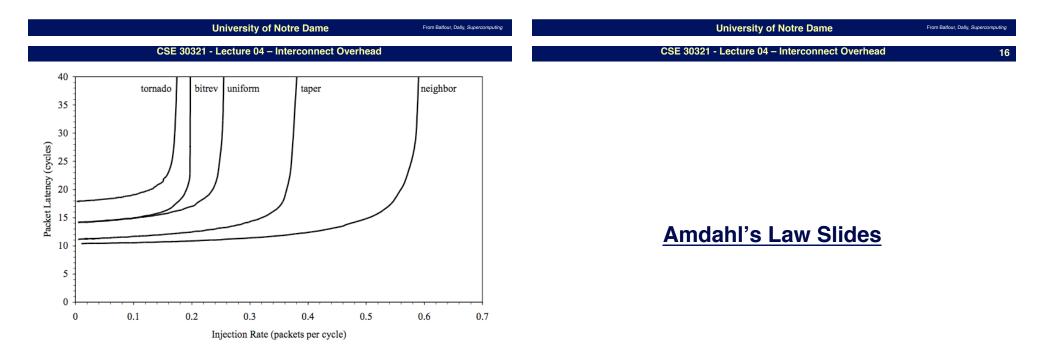



Figure 11: Workload Packet Latency Distribution for Uniform Random Traffic Pattern

Figure 12: Offered Latency for CMeshX2 Network

Contention for access to shared resources

- i.e. multiple accesses to limited # of memory banks may dominate system scalability
- **Programming languages, environments, & methods:**
 - Need simple semantics that can expose computational properties to be exploited by large-scale architectures

🛨 Algorithms

Core0/2

Core4/2

- What if you write good code for a 4-core chip, and then get an 8-core chip?
- **Cache coherency**
 - P1 writes, P2 can read
 - · Protocols can enable \$ coherency but add overhead

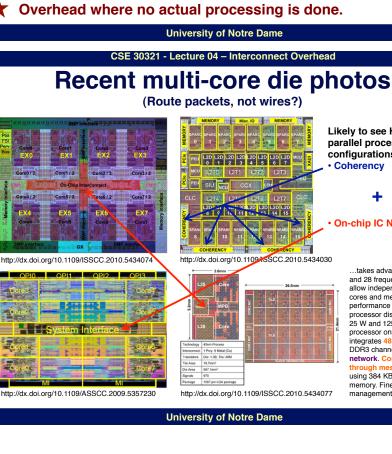
Impediments to Parallel Performance

CSE 30321 - Lecture 04 – Interconnect Overhead

Latency

- Is already a major source of performance degradation
- Architecture charged with hiding local latency
 - (that's why we talked about registers & caches)
- Hiding global latency is also task of programmer
 - (I.e. manual resource allocation)
- Today:
 - access to DRAM in 100s of CCs
 - round trip remote access in 1000s of CCs
 - multiple clock cycles to cross chip or to communicate from core-to-core
 - Not "free"

Overhead where no actual processing is done.


University of Notre Dame

CSE 30321 - Lecture 04 – Interconnect Overhead

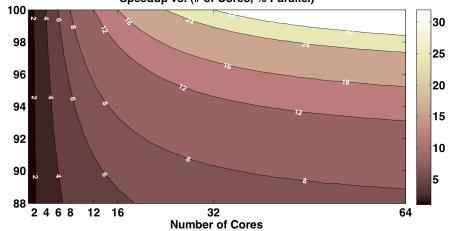
- All **†**'ed items also affect Fraction_{parallelizable}
 - (and hence speedup)

University of Notre Dame

Likely to see HW support for parallel processor configurations: Coherency

On-chip IC NWs

...takes advantage of 8 voltage and 28 frequency islands to allow independent DVFS of cores and mesh. As performance scales the processor dissipates between 25 W and 125 W. ... 567 mm² processor on 45 nm CMOS integrates 48 IA-32 cores and 4 DDR3 channels in a 2D-mesh network. Cores communicate through message passing using 384 KB of on-die shared memory. Fine-grain power management


19

Impediments to Parallel Performance

21

Multi-core only as good as algorithms that use it

Speedup vs. (# of Cores, % Parallel)

University of Notre Dame