
Lecture 05 – CSE 40547/60547 – Computing at the Nanoscale – Physical Limits 
 
Properties of Information 
Examples of “information”: 

- Natural language, a printed page of a book, an Excel spreadsheet file, an image, smell, etc. 
 
General operations applicable to information include: 

- Transmission 
- Processing, manipulation 
- Storage 

 
Can define 3 levels of information – per American philosophers and logicians Charles S. Pierce and Charles 
W. Morris 

- Syntactic level: 
o Concerned with: 

 Formal relation between elements of information 
 Rules of corresponding language 
 Design of coding systems for information transmission, processing, and storage 

o At this level, not interested in the meaning of information or its practical significance – from the 
standpoint of computation, this is probably what we care about the most actually… 
 

- Semantic level 
o Relates information to its meaning – information given in natural language based upon 

convention within a group of people 
o According to Claude Shannon: 

 Semantics is NOT required for correct processing of the syntactics of information! 
 (Practically speaking, may be useful – e.g. to increase efficiency of data compression) 

 
- Pragmatic level 

o Here, information is related to the practical value – or usefulness – of it 
o Strongly depends on the context of the recipient 
o Information could be economical, political, or psychological value 
o Often, a function of time 

 
Global elements of information in a given language are symbolic expressions that carry the meaning and the 
practical value.  Some definitions… 
 

- Characters:    Irreducible elements of a language 
 

- Alphabet (or code): Basic set B of characters in a language 
o Examples: 

 Morse code:    dot, dash, space 
 English language: 26 letters, 10 numeric digits, various punctuation marks 
 Binary code:  1 and 0 

• (This is the most elementary code one can imagine) 
• (Makes it the most suitable for carriers with bi-stable states used in digital 

electronics) 
 

o Note, all examples above have a discrete number of basic characters 
 Language could be composed of elements on a continuous scale too (i.e. music) 

 
- Ordering:  In many cases, characters of set B are ordered; i.e. there is a unique position in  

an ordered list, and a character has an equal or lesser value compared to others 



In order to be transmitted, processed, or stored… 
- Information requires a physical carrier and a medium for the carrier 
- Information is coded onto the carrier by structuring or patterning the carrier in space or time 

o Deliberate structures of a physical carrier are called signals 
 

- There are carriers and media that are more/less suited to perform different operations on information: 
o Examples? 

 Electromagnetic waves are especially suitable for information transmission – but are less 
suitable for storage 

 Magnetic materials are very useful for storage, and less useful for transmission 
• See Naeemi chart from Lecture 04 

 
 
It is possible to change the code alphabet without affecting the meaning of what is coded (i.e. the semantics) 

- Examples? 
o The characters of the English alphabet can be translated into hexadecimal code 
o i.e. 7-bit ASCII 

 
Although information requires a carrier, it is independent of the type of carrier 

- Example: 
o Binary code information may be transferred from a magnetic tape to a semiconductor memory 

and vice versa without changing the information (i.e. the syntactics or the semantics) 
- Alternatively: 

o Type of carrier determines the possible ways of structuring information 
o Example: 

 Printed letters can be carried on paper, display media, etc. … but need to be translated 
into another code before they can be transferred onto a magnetic tape 

 
Mathematical Definition of Information 
Fundamental question … how do we measure information? 

- A function of uncertainty … obtaining information removes uncertainty; with this context: 
o One requirement for a measure of information: 

 Information increases monotonically with decreasing probability of uncertainty 
o A second requirement for a measure of information: 

 It is additive 
 i.e. 2 pages of a book contain 2X the information as one page 

 
As proposed by Claude Shannon: 

- A function that satisfies both measures is: I = !k ln p  
o (k represents a constant that will be defined further below) 

 
- Example: 

o If we have a (fixed) number m of printing positions per page, and each position can be taken by 
1 of 26 letters of the alphabet (in addition to a SPACE), the number of possible arrangements is: 

 
! = Nm  

 
o If we assume that individual probability pi of all letter to occur in a given position is equal, then 

the probability of a character pattern occurring in one spot on the page is: 
 

p = 1
Nm  

 



 In reality, this is an over-simplification as the letter “E” is much more common that “X” 
 

o However, if we stick with the above assumption, then the information capacity of a page with m 
character positions is: 

 
Im = k lnN

m = km lnN  
 

 For example, if m = 3,000, then Nm = 273000 ~ 104294! 
 

o Again though, subsequent letters must produce reasonable words – so this is an upper bound 
 

o In considering different probabilities – i.e. the natural occurrences – of letters in the English 
alphabet, we can define an expression for averaged information (also called the expectancy 
value H) 

H = !k pi ln pi
i=1

N

"  

 
o In order to determine k, we need to establish a reference for measuring I 

 For this, we consider only one letter position instead of m and we change our code from 
the English language (where N is larger) to a binary code (where N is 2) 

 The probability of having a 0 or a 1 is simply p = 0.5 
 Thus, if information is 1 bit (i.e. I =  1 bit) and p = 0.5, we can solve the I = !k ln p  

expression for k 

• (where we find that k = 1
ln2

) 

 Thus, I = ! ln p
ln2

 and H = ! pi
ln pi
ln2i=1

N

"  

 
If we consider binary coded information, the information which we can represent in m positions (e.g. on 
memory, on a bus of signal lines, etc.) depends on the constraints of the selection.  There are 3 different cases 
to consider: 

1. If only one position may take on an opposite binary state – i.e. as in a set of de-multiplexed signal lines 
– then the number of possible configurations W is equal to the number of lines: 
 

! =m  
 
 
 
 
 

2. If there is a fixed number n out of m positions which have an opposite state, the number of possible 
configurations Ω increases to: 
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3. If n is allowed to vary between 0 and m, Ω becomes: 
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 (This is the same results as Ω = Nm  with 2 representing a binary code) 
 
There is an important link between information theory and statistical thermodynamics: 

- Case 2 above can be realized by an ideal gas of n molecules, confined a volume V, in which the gas 
molecules can occupy m different positions 

- According to Boltzmann, the entropy of a system is defined as: 
 

S = kb ln!  
 

o Here, W is the number of possible combinations of microscopic states and kb is Boltzmannʼs 
constant – 1.38 x 10-23 J/K 

 
Obviously, except for a constant factor, expressions for information and entropy are identical 

- This is because both are based on the possible (microscopic) configurations of Ω of a macroscopic 
system 

 

In the case of different probabilities, we have introduced the average information by H = !k pi ln pi
i=1

N

"  

- This equation is identical to the entropy of mixtures of ideal gases 
o It has a maximum – i.e. if all probabilities are equal 

 
What can be learned from the relation between information and physical entropy of a system? 

- If we consider an ideal gas, in a volume V, and then reduce the volume to V = V/2 under isothermal 
conditions (i.e. such that the temperature remains constant) we do not change the energy of the ideal 
gas 

- However, we did reduce the entropy by ½ as, with the new volume V, only ½ because only half as 
many positions are possible for the atoms 

- According to the 2nd law of thermodynamics, this entropy reduction ΔS is achieved by dissipation of 
thermal energy ΔWQ to the environment according to:  !WQ = T!S  

 
A stored bit in any information system can be in one of two states: 

- If both states have equal probability, a minimum entropy associated with this bit is: 
 

S = kb ln! = kb ln2  
 
Reducing the number of bits – i.e. by processing it through a binary logic gate with fewer output lines 
than input lines reduces the number Ω  of possible microscopic states by one for each erased bit. 
 
This leads to an energy dissipation of: !WQ = T!S = kbT ln2" kbT ln1= kbT ln2  
 
Irreversible vs. Reversible Logic 
In all switching elements with more than one input, a loss of information occurs when information is processed 

- For example, given a conventional, 2-input AND gate, it is not possible to reconstruct what the inputs to 
the gate were given the single output bit 

o A 0 at the output can be the result of 3 different input combinations 
- This computation is irreversible 

o Any loss of information inherently leads to a minimum energy dissipation of: 
ΔWq = TΔS = kbTln2 

  because of the change in entropy in the system 
 



More fundamentally, can information be processed in a reversible manner? 
- Theoretically yes  but gates are required that do not loose information: 

 
 
Example:  A Fredkin gate, and the use of a Fredkin gate for carry logic in an adder 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
How much energy is dissipated for a switching operation? 
Let me try to answer this question by considering where we are at now… 
 
Fundamentally, this is really related to dynamic power dissipation:  P =CV 2 f   E = P! tp  
 
Letʼs assume some properties associated with a 45 nm process: 

- Assume Leff     = 45nm
2

! 22nm  

- Assume W     = 90 nm (not all devices are minimum width) 
- κ (dielectric constant) of HfO2  = 25 
- εo (permittivity of free space)  = 8.854 x 10-12 F/m 
- Supply voltage V   = 1V 
- Clock rate    = 2.5 GHz 
- tox     = 3 nm 

 
Therefore, energy is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 



This data is consistent with projected results: 
 

 
 
Now, letʼs compare this to kbTln2 … 

- kbT ln(2) is ~2.87 x 10-21 J 
- As such, there is room for more than a 50,000X improvement! 

 
An ultimate computer: 
Some thoughts from Waser, 2003: 

- An ultimate information processing system for general purpose may have the following features: 
o Homogeneous arrays, which are relatively fine-grained.  Why? 
o Parallelism at different hierarchical levels.  Why? 
o Emphasis on local interconnects.  Why? 
o Universal, non-volatile memory. 
o Defect and fault tolerance.  Why? 
o The system should also be small, light, cheap, fast, robust, and work at room temperature 

 
As noted above, still have more than 4 orders of magnitude before we approach an ultimate information 
processing limit… 

- Although practically, may need energy difference between states of ~10kT for suitably reliably operation  
 
That said, general purpose processors are even MORE inefficient: 

- May need 5 orders of magnitude MORE energy to do the same computational task as s fully integrated 
circuit 

o Need larger transistors that are used to (a) optimize the circuit for high speeds and (b) to charge 
extended interconnect lines, common in processor architectures 

 This is about 1 order of magnitude additional energy 
o The other 4 orders of magnitude from from control and glue logic… 

 This latter part cannot be recovered from progress in circuit technology 
 
Picture:   Types of realization of information processing systems: 
 
 
 
 



Take aways: 
- Lots of room for new devices to help… 
- …but new architectures may help even more… 
- Many orders of magnitude available to get more bang for energy buck 

 
 
 
 
 


