
CSE 30321 – Computer Architecture I – Fall 2011
Homework 01 – Introduction to Programmable Processors – 70 points

Assigned: August 30, 2011 – Due: September 6, 2011

Useful Information
For all of the problems shown below, it may be useful to refer to (a) the instruction set for the 6-
instruction processor discussed in class and (b) the datapath diagram associated with this ISA. Copies
are also included here for your reference

Instruction Meaning Opcode

Mov Ra, d RF[a] = D[d] 0000

Mov d, Ra D[d] = RF[a] 0001

Add Ra, Rb, Rc RF[a] = RF[b] + RF[c] 0010

Mov Ra, #C RF[a] = #C 0011

Sub Ra, Rb, Rc RF[a] = RF[b] - RF[c] 0100

Jmpz Ra, offset PC = PC + offset if RF[a] = 0 0101

University of Notre Dame!

CSE 30321 - Lecture 02-03 – Stored Programs! 15

Control unit and datapath for 3-

instruction processor!
•! Convert high-level state machine

description of entire processor to
FSM description of controller that
uses datapath and other
components to achieve same
behavior!

Fetch

Decode

Init

PC=0

Store

IR=I[PC]

PC=PC+1

Load Add

RF[ra] =

 RF[rb]+

 RF[rc]

D[d]=RF[ra]RF[ra]=D[d]

op=0000 op=0001 op=0010

PC
clr up

16
I R

Id

16

16

I data rd addr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr

RF_Rq_addr
RF_Rq_rd

RF_Rp_rd

RF_W_addr

D_addr 8

D_rd
D_wr

RF_s

alu_s0

addr D
rd
wr

256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0

16

16

16

16 16

16

s
1

A B
s0 ALU

4

4

4

Fetch

Decode

Init

PC=0
PC_ clr=1

Store

I R= I [PC] PC=PC+1
I _rd=1 PC_inc=1
I R_ld=1

Load Add

RF[ra] = RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

D_addr=d
D_wr=1
RF_s=X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s=0
RF_Rq_addr=rc
RF_Rq _rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s0=1

D_addr=d
D_rd=1
RF_s=1
RF_W_addr=ra
RF_W_wr=1

Problem 1: (20 points)
Machine code is a useful abstraction in that it gives you a feel for how some pseudo code and/or high-
level language (HLL) code might actually be executed on a given microprocessor, yet also abstracts
away some of the “gory detail” associated with the process (i.e. a “1s” and “0s” representation).

Assume that you have the following sequence of instructions

• All are for the 6-instruction processor discussed in lecture…
MOV R1, #7
MOV R2, #8
MOV R3, #7

*1 MOV R10, #24
*2 SUB R4, R3, R3
 SUB R5, R1, R4
 JUMPZ R5, P
 SUB R5, R2, R4
 JUMPZ R5, Q
 ADD R11, R10, R3
 JUMPZ R0, END
P: ADD R11, R3, R3
 JUMP R0, END
Q: ADD R11, R3, R10
END:
Part A: (10 points)
After the above instructions have been executed, what has been done?

• You should answer in terms similar to: d(x) = d(y) + d(z), x = y * z, etc.
• In other words, don’t just translate the instructions to register transfer language, but think about

what they might represent in terms of some HLL construct; in other words, DON’T just explain
how data is moved around in registers/memory locations.

• Assume that R4 maps to the variable x and R11 maps to variable y.
• To simplify your answer, I have added explicit labels in the JUMPZ instructions. This avoids the

trouble of computing addresses (which is an easy way to make a mistake).
• You should assume that R0 always has the value 0.

Part B: (4 points)
Write the machine code for the instructions *1 and *2. Please answer in hex.

Part C: (6 points)
How many CC’s are required to execute the assembly code in Part C?

• Your answer should consider what instructions are actually executed, not the time that would be
required if all instructions were executed.

• Remember that each instruction takes multiple CCs.

Problem 2: (10 points + 3 bonus points)
The question below requires you to write some 6-instruction processor code. It is included to give you
more practice working with instruction mnemonics.

Translate the following C code to 6-instruction processor assembly language.

 i = 24;
 while (i < 35) {
 y(1) = y(1) + i;
 i = i + 1;
 }

• An EXACT translation is not required; your 6-instruction processor assembly code simply needs
to provide the same functionality – however, you CANNOT make 10 copies of the loop body…

• As in problem 1, you can just use a label in a JUMPZ instruction if this type of instruction is
required in your answer.

• When writing your assembly code, think about how you might reduce the number of instructions
that are executed – and hence overall execution time. For this problem, there is at least 1 way
to significantly reduce execution time. Answer that incorporate this solution will receive 3 bonus
points.

• Construct your answer as shown below. More detailed comments are well-correlated to more
partial credit!

 Add R1, R1, R2 # R1 R1 + R2 (a a + b)

Problem 3: (15 points)
The focus of the questions below is architectural and hardware support for high-level language
programming constructs. In other words, if there are constructs in a high-level language that are
frequently used, it’s generally a good idea to support the realization of said constructs with appropriate
hardware. The instruction set architecture is this interface.

For example, a useful addition to the 6-instruction processor ISA might be a new type of load or store
instruction like that specified below:

Opcode Syntax Register transfer language

and encoding
Example

1110 LOAD Rw, Rp Rw Memory(Rp)
1110 | wwww | pppp | unused

Assume
- Rw is R1
- Rp is R2
- R2 contains the number 9
- Memory address 9 contains the

number 18

This instruction will then:
- Send address 9 to memory
- The data contained in address

9 – the number 18 – will be
copied to register R1

1111 STORE Rp, Rq Memory(Rp) Rq
1111 | unused | pppp | qqqq

Assume
- Rp is R1
- Rq is R2
- R1 contains the number 12
- R2 contains the number 24

This instruction will then:
- Store the number 24 at memory

location 12.

Part A: (7 points)
Describe how the datapath on page 1 would need to be modified to support these new
instructions.

• Note that this is the same 6-instruction datapath discussed in lecture.
• For reference, a picture is also linked on the course website.

Part B: (8 points)
Explain why these 2 additions to the original 6-instruction ISA are useful?

- Hint:
o Think about what common HLL statements might be enabled – and that are either (a)

not possible or (b) extremely difficult to do given only the initial 6 instructions. Providing
this type of example is a good way to answer this question.

Problem 4: (5 points)
The focus of the question below is also on architectural and hardware support for high-level language
programming constructs.

Would it be practical/feasible to use 6-instruction processor instructions to write/generate assembly
language that does the following:

 if (x < 10)
 y = x * z;
 else
 y = x + z;

Problem 5: (20 points)
In this last question, we consider a more sophisticated ISA – namely a subset of the ARM ISA.

• How common are ARM chipsets? Per the Wall Street Journal, “approximately 95% of the

world’s mobile handsets and more than one-quarter of all electronic devices use an ARM chip.”1

• A subset of the ARM ISA is shown in the table below – note that many arithmetic instructions
(e.g. ADD, SUB) are quite similar to their 6-instruciton ISA counterpart.

• However, the instructions that access memory, conditional branch instructions, etc. are more

sophisticated than their 6-instruction counterparts.

• Examples that illustrate what each ARM instruction does are also included in the table below.
Be sure that you understand how each instruction works, and then answer the questions below.

Q: Why the change in ISAs?
A: You should become comfortable with interpreting machine code for different microprocessor

architectures. A goal of this course is not to teach you MIPS or ARM assembly, but rather to (a)
understand how the machine instructions accomplish some set of tasks specified by HLL code
and (b) understand how changing code written in some HLL and/or a given processor-memory
configuration can affect performance.

1 http://blogs.wsj.com/tech-europe/2010/11/19/intel-microprocessor-business-doomed-claims-arm-co-founder/

Instructions:

Instruction Syntax What happens… Comments
ADD ADD R1, R2, R3 R1 R2 + R3 • Assume R2 = 10, R3 = 20

• 30 will be stored in R1
 ADD R1, R2, 100 R1 R2 + 100 • Assume R2 = 10

• 110 will be stored in R1
• (It is possible to encode a constant

value directly in the instruction itself.)
B B <addr> PC PC + <addr> • This is an “unconditional” branch

instruction – the value of the PC is
automatically updated.

• Assume PC = 100, <addr> = 200
• The next instruction will be fetched

from address 300
• (i.e. PC = 300)

B <CC> BGT <addr> If the GT (greater than) flag is
set:

• PC PC + <addr>
Otherwise:

• The value of the PC is
unchanged

• <CC> stands for “condition code”
• Condition codes are set after certain

instructions are executed and can be
thought of as TRUE or FALSE flags.

• Other common condition codes – and
hence instructions – are shown in the
table below.

CMP CMP R1, R2 Status = R1-R2
• Status flags are

updated accordingly

Example:
• Assume R1 = 10, R2 = 9
• Status = 1
• GT = TRUE (R1 is > R2)
• GE = TRUE (R1 is ≥ R2)
• LT = FALSE (R1 is not < R2)
• LE = FALSE (R1 is not ≤ R2)
• EQ = FALSE (R1 ≠ R2)

 CMP R1, # Status = R1 – # • Like above, but R9 replaced with
constant value

LDR LDR R2, [R1] R2 Memory(R1) • R1 contains the address that is sent to
memory

• The data at the address specified by
R1 is stored in R2

 LDR R2, [R1, 4] R2 Memory (R1 + 4) • The address sent to memory is the
sum of the data in R1 + the constant 4

• The data at the address specified by
R1 + 4 is stored in R2

MUL MUL R1, R2, R3 R1 R2 x R3 • Assume R2 = 10, R3 = 20
• 200 will be stored in R1

STR STR R2, [R1] Memory(R1) R2 • R1 contains the address that is sent to
memory

• The data stored in R2 is copied to the
memory address stored in R1

 STR R2, [R1, 4] Memory (R1 + 4) R2 • The address sent to memory is the
sum of the data in R1 + the constant 4

• The data stored in memory is
contained in R2

SUB SUB R1, R2, R3 R1 = R2-R3 • Assume R2 = 30, R3 = 20
• 10 will be stored in R1

Condition codes:

Code Explanation
GT If a number is greater than a reference number, the GT flag is TRUE, otherwise it is FALSE
GE If a number is greater than or equal to a reference number, the GE flag is TRUE, otherwise it is FALSE
LT If a number is less than a reference number, the LT flag is TRUE, otherwise it is FALSE
LE If a number is less than or equal to a reference number, the LE flag is TRUE, otherwise it is FALSE
EQ If a number is equal to a reference number, the EQ flag is TRUE, otherwise it is FALSE

Part A: (5 points)
• Assume that you want to compare the data stored in R3 to the data stored in R4

o If R4 is less than or equal to R3, you should add R10 to R11 and store the result in R12
o Otherwise, you should subtract R10 from R11 and store the result in R12

Write the ARM assembly language to do this. Use as few of instructions as possible from the
subset described above.

Part B: (5 points)

Write ARM assembly for the C code given in Problem 4 (and reproduced here).

• You should assume that:

o x maps to R1
o y maps to R2
o z maps to R3

• C code:

 if (x < 10)
 y = x * z;
 else
 y = x + z;

Question C: (10 points)

Explain what the following sequence of ARM instructions does. (Use HLL / pseudo code.)

 ADD R1, R0, #100
 Q: CMP R1, #1000
 BGT P
 STR R1, R1
 ADD R1, R1, #100
 B Q
 P:

