
CSE 30321 – Computer Architecture I – Fall 2011
Homework 02 – Architectural Performance Metrics – 70 points

Assigned: September 6, 2011 – Due: September 13, 2011

Problem 1: (15 points)
The scope of this 1st problem is more in-line with Lectures 02 and 03 than Lecture 04. It is included in
this problem set to re-enforce and review concepts that will be revisited throughout the semester – i.e.
register transfer language, when the contents of a register or memory address change, etc.

Parts A and B both refer to the 6-instruction processor equivalent assembly shown below:

6-instruction processor assembly
Assume R0 = 0
0: MOV R6, #7
1: MOV R1, #1
2: SUB R2, R6, R1
3: ADD R2, R2, R2
4: JUMPZ R2, E
5: SUB R11, R11, R1
6: JUMPZ R0, E
7: ADD R1, R11 R1
E:

For your reference, the finite state diagram for the 6-instruciton processor is also shown below:

Part A: (9 points)
For instructions 1, 2, and 3, write out the basic register/memory transfer operations that occur during
each clock cycle. Also, for each clock cycle, provide the contents of the registers/memory locations
whose contents have changed.

An example of how to get started (for instruction 0) is included below:

Cycle Events and Register File (RF) /Memory Contents
0000 IR = I[0] ■ PC PC + 1
0001 IR = 0x3607 (in hex) ■ PC = 1
0002 Determine/calculate value to go into R6 (value will be 7)

Part B: (6 points)
During clock cycle 15, what state is the processor in? (i.e. “Fetch”, “Decode”, etc.)

Problem 2: (20 points)
Setup:
In Problem #5 of Homework #1, we considered a subset of the ARM ISA. One of the ideas discussed
in this problem was that of “condition codes.” More specifically, when certain instructions were
executed, bit-sized flags would be set depending upon the result that the instruction produced. For
example, consider the CMP (or compare) instruction:

- Assume that R1 = 10 and R2 = 9.
- Status flags are set based on the value produced by R1 – R2.
- Thus, after CMP R1, R2 is executed:

o If GT condition is tested, the result will be TRUE, as R1 is > R2
o If GE condition is tested, the result will be TRUE, as R1 is ≥ R2
o If LT condition is tested, the result will be FALSE, as R1 is not < R2
o If LE condition is tested, the result will be FALSE, as R1 is not ≤ R2
o If EQ condition is tested, the result will be FALSE, as R1 ≠ R2
o If Mi condition is tested, the result will be FALSE, as the result is positive / not negative

 (Mi stands for “minus”)
o If Pl condition is tested, the result will be TRUE, as the result is positive

 (Pl stands for “plus” and it is TRUE if a checked value is positive OR zero)
Interestingly, when a normal ADD or SUB instruction is executed, condition codes are NOT set. For
example, if the instruction SUB R3, R4, R4 were executed, R3 would obviously contain the number 0.
However, the existing state of the EQ flag would not change.

However, another type of ADD or SUB instruction can also set condition codes in addition to performing
an add or subtract operation (as normal). For example, if the subtract instruction SUB R3, R4, R4 is
replaced with the instruction SUBS R3, R4, R4, the following would be done:

- R3 would be set to 0
- The EQ flag would we be set to TRUE

Even more interestingly, add and subtract instructions exist that are conditionally executed based on
the value of a condition code. For example, given the instruction SUBGT R3, R4, R4, the contents of
R3 would only be changed if the GT flag were TRUE (or ‘1’) – otherwise the value of R3 would remain
the same (i.e. for the case where GT is FALSE or ‘0’).

Part A: (15 points)
In Table 2.1, I have provided two translations of the C-code shown below into ARM assembly. (One
translation uses instructions like SUBGT, and the other does not.)

• Assume that EVERY instruction –branches, jumps, conditional adds, etc. – take 3 CCs.
• Is the new code faster than the old code? If so, calculate a speedup and explain – very

specifically – where the speedup comes from.

C-code:
 for(i=0; i<1000; i++) {

y(i) = y(i) + A*x(i);
 if y(i) > 0
 a = a + 1;
 else
 a = a – 1;
 }

Table 2.1

Program without conditional ALU instructions Program with conditional ALU instructions
 MOV R1, R0 i maps to R1, initialize i to 0 MOV R1, R0 Same
loop CMP R1, #1000 compare R1 to the #1000,

set condition flags
loop CMP R1, #1000 Same

 BGE end if i ≥ 1000, exit loop BGE end Same
 LDR R4, [R1] load y(i) LDR R4, [R1] Same
 LDR R5, [R1+1000] load x(i) LDR R5, [R1+1000] Same
 MULT R5, R5, R6 (assume R6 = A)

A*x(i);
 MULT R5, R5, R6 Same

 ADD R4, R5, R4 y(i) + A*x(i) ADDS R4, R5, R4 Same; set code
 ADDi R1, R1, #1 update counter ADDi R1, R1, #1 Same
 CMP R4, R0 compare y(i) with Q SUBiMi R10, R10, #1 Set R10 only if

Mi check is true
 BPl plus goto “plus” if y(i) > Q

(i.e. R4 > R0)
 ADDiPl R10, R10, #1 Set R10 only if

Pl check is true
 SUBi R10, R10, #1 otherwise, subtract 1 from a

(assume R10 = a)
 B loop

 B loop start loop again end
plus ADDi R10, R10, #1 add 1 to a, if condition met

(assume R10 = a)

 B loop start loop again
end

Part B: (5 points)
Now, assume that condition flags are analyzed in the 2nd clock cycle of instruction execution as
opposed to the 3rd? Thus, an instruction like AddiPl only takes 2 CCs instead of 3 CCs. How does this
change your answer to Part A?

Problem 3: (15 points)
Assume that a computer has 4 different classes of instructions:

1. Floating Point (i.e. for non-integer operations)
2. Integer (i.e. for general, integer addition and subtraction)
3. Load / Store (i.e. to fetch data from memory and write data to memory)
4. Branch (i.e. jump instructions that take you to different parts of a program)

Some instructions require more work than others and may require a different number of clock cycles (or
percentage of the total program time). To make an analogy to the 6-instruction processor, you could
say that:

1. ADD/SUB represents one class of instructions (each of which takes 3 CCs to execute)
2. MOV (constant) and MOV (load/store) represents another class (and all instructions in this class

also require 3 CCs to finish)
3. JUMPZ represents a third class – and may take 3 or 4 CCs to complete depending on the state

of the referenced register.

Part A: (12 points)
Assume that a given program takes 2 hours to finish. As a computer architect, you have been asked to
make this program run faster – and can make 1 of 3 design decisions:

1. Improve the processor hardware to make your floating-point unit 5X faster.
2. Improve the processor hardware to make your integer unit 1.5X faster.
3. Change your processor hardware and compiler to support a new instruction that will immediately

allow data loaded from memory to be used in an arithmetic operation. With this new instruction,
the time spent executing integer instructions can be reduced by 20% and the time spent
executing load/store instructions can be reduced by 15%.

You may assume that:

o 10% of the program time is spent executing floating point instructions
o 35% of the program time is spent executing integer instructions
o 30% of the program time is spent executing load/store instructions
o 25% of the program time is spent executing branch instructions

Which option – if any – is best?

Part B: (3 points)
What insight does your answer to Part A provide about what type of enhancement (if any) may be best?

Problem 4: (10 points)

Note: Except for the fact that we assume the same 4 classes of instructions – floating point, integer,

load/store, and branch – this part of the question is unrelated to Part A and Part B.

Assume that a 2.33 GHz microprocessor is used to execute a program where the mix of instructions is
as shown in Table 4.1. The finite state diagram for this processor is also shown below.

Table 4.1: Percentage of each instruction class for program in question.

Instruction Class Floating Point Integer Load / Store Branch
% of program 10% 50% 25% 15%

fetch!

Floating

Point EX 1!

Floating

Point EX 2!

Floating

Point EX 3!

Floating

Point EX 4!

Write

Register!

Integer!

Write

Result!

Load/Store

1!

Load/Store

2!

Load/Store

3!

Branch !

(or jump)!

decode!

Figure: Finite state diagram for processor in question.

As before, as a computer architect, you have been asked to make this program run faster – and can
make 1 of 3 design decisions:

1. Reduce the number of clock cycles required for any integer instruction from 4 to 3 – but at the
expense of a 2.15 GHz clock rate for every instruction.

2. Eliminate all floating-point instructions with no change to the clock rate. The new instruction mix
is now: 60% Integer, 25% Load/Store, 15% Branch.

3. Improve the clock rate to 2.5 GHz for every instruction – but at the expense of a 4-cycle branch
instruction.

Which design option – if any – is best?

Problem 5: (10 points)
You are currently running a program on a single core microprocessor. To improve performance, you
are contemplating buying a new 8-core microprocessor.

You would like your overall execution time to improve by 6X. How much of your original code must you
parallelize?

