
CSE 30321 – Computer Architecture I – Fall 2011
Homework 04 – MIPS Procedure Calls – 60 points

Assigned: September 20, 2011 – Due: September 27, 2011

Problem 1: (5 points)
Translate the following sequence of ARM assembly instructions to MIPS assembly instructions.

 MOV R7, #10 # initialize loop counter to 10
 Loop: ADD R6, R6, R5 # add R5 and R6, store the result back in R6
 SUBiS R7, R7, 1 # decrement the loop counter
 BNE Loop # if condition code is FALSE, repeat the loop

Notes / suggestions / things to think about:
- You may want to refer back to HW 01, P. 05 and/or HW 02, P. 02 for a refresher on ARM syntax
- This problem has been included to re-enforce an important idea that has been brought up in class

several times. Namely, when writing assembly code for different instruction set architectures
(ISAs), you cannot “mix and match” instructions from one ISA with that of another.

o For example, in the provided code, an instruction like “beq $0, $0, next” would not appear.
o A good analogy is the syntax required to implement a for loop in Matlab code or C code.

Conceptually, the loops could iterate through an array of data in exactly the same way.
However, the syntax required for the loop to execute correctly within the Matlab environment
or to compile (in the case of the C-code) is different. Similarly, in both the ARM and MIPS
ISAs, there is a way to compare the contents of a register to 0 and branch accordingly, but
the assembly syntax (and thus how the processor hardware performs the operation) is
different.

Problem 2: (10 points)
The C-code for an array-based swap procedure and the corresponding MIPS assembly appears below:

C-code: MIPS assembly:

void swap(int v[], int k, int j) { swap:
 int temp; sll $t0, $a1, 2
 temp = v[k]; add $t0, $t0, $a0
 v[k] = v[j]; lw $t2, 0($t0)
 v[j] = temp; sll $t1, $a2, 2

} add $t1, $t1, $a0
 lw $t3, 0($t1)
 sw $t3, 0($t0)
 sw $t2, 0($t1)
 jr $ra

Part A (6 points):
The C-code for a pointer-based swap procedure appears below. Write the MIPS assembly.
C-code:
 void swap(int *p) {
 int temp;
 temp = *p;
 *p = *(p+1);
 *(p+1) = temp;
 }

Notes:
- Write your code as efficiently as possible.
- You should assume that $s registers, the $ra register, etc. DO NOT need to be saved.

Part B (4 points):
Which version is faster – the array-based version or the pointer-based version? By how much?

Problem 3: (30 points)
Two C-based versions of the function find are provided below – an array-based version and a pointer-
based version. You should assume that (i) find is a leaf procedure and (ii) no $s registers, the return
address register, etc. need to be saved to the stack. Note that the array index is returned.

Array-based version: Pointer-based version:
int find(int a[], int n, int x) { int find(int *a, int n, int x) {
 int i; int *p;

for(i=0; i!=n; i++) { for(p=a; p!=a+n; p++) {
 if(a[i] == x) { if(*p==x) {
 return i; return p-a;
 } }
 } }

return -1; return -1;
} }

Part A (15 points):
Translate the array-based version into MIPS assembly.

Part B (15 points):
Translate the pointer-based version into MIPS assembly.

Problem 4: (15 points)
Assume that main() calls a leaf procedure function – which takes 5 arguments.

Part A (5 points):
Following the MIPS procedure call conventions, write the MIPS assembly instructions to callee save the
first three $sx registers (i.e. $s0, $s1, and $s2). As part of your answer, explain where these
instructions would go – i.e. where in main, where in function, etc. Remember the stack starts at higher
memory addresses and grows “down” toward lower memory addresses

Part B (5 points):
Assume that main needs to use $t4 and $t5 after the call to function.

i. According to the MIPS convention, where are these registers saved?
ii. Write the MIPS assembly to RESTORE these registers.
iii. Where would these assembly instructions go?

Part C (5 points):
How would the 5 arguments be passed to function? A text description is sufficient – i.e no MIPS
assembly need be written.

