
CSE 30321 –  Computer Architecture I – Fall 2011 
Lab 01: Architectural-level Performance Metrics  Assigned:  August 31, 2011 
Total Points: 100 points      Due:   September 15, 2011 
 
1. Goals 
In this lab, we’ll measure how hardware or software changes can impact program performance. 
In lecture, we have discussed two important concepts – (1) Instruction Set Architectures (or ISAs) and 
(2) techniques for measuring architectural level performance. Upon completion of this lab, you should: 

1. Have a better understanding as to what architectural level design features can help to improve 
performance – as well as when adding new features is not beneficial.  

2. Even more importantly, you’ll learn how to use simulation tools that can be leveraged to 
evaluate any potential architecture – and for different application spaces. 

 
2. Introduction and Overview 
We will use an architectural-level simulator called SimpleScalar. SimpleScalar allows you to 
describe a microprocessor’s datapath and memory hierarchy in a simple, text-based 
configuration file.   

 
 
(Regarding Items 2-5, recall from Lecture 1 that, generally, all of the data needed by a program will not 
be able to fit in the faster, on-chip memory.  Instead, the most frequently used data is kept in faster, on-
chip memory – and requests are made to slower, off-chip memory if data is not found on-chip.) 
 
After describing the processor/memory architecture that you wish to evaluate, you can then use 
SimpleScalar to predict how a given program or benchmark will perform given that processor/memory 
configuration.  Detailed, architectural-level simulations allow a computer architect (or compiler writer) to 
see whether or not design changes to a processor/memory configuration (or compiler) are beneficial at 
the application-level without actually building hardware. 

# total number of integer ALU's available!
!-res:ialu                        ! !1!

# l1 data cache hit latency (in cycles)!
!-cache:il1lat                    ! !1 !

# l1 instruction cache hit latency (in cycles)!
!-cache:il1lat                    ! !1 !

# memory access latency (<first_chunk> <inter_chunk>)!
!-mem:lat               ! ! !64 1!

# memory access bus width (in bytes)!
!-mem:width              ! !4!

We might have an entry that 
specifies the number of 
ALUs available.  (e.g. just 1)!

1!

If data is requested from on-
chip memory, it will take 1 
clock cycle (CC) to get it.!

2!

If an instruction is fetched 
from on-chip memory, it will 
take 1 CC to get it.!

3!

We can specify the time 
required to access off-chip 
memory (i.e. if data is 
requested, it will take 64 
cycles to get it).!

4!

We can specify the bandwidth between the microprocessor 
datapath and off-chip memory.!

5!

Example configuration file text:!



The version of SimpleScalar that we’ll use is targeted toward the ISA associated with ARM 
microprocessors.  There are several reasons for this choice: 
 

1. The ARM ISA is very similar to the MIPS ISA to be discussed in class, and is not dissimilar from 
the 6-instruction ISA for that matter.  For example, as seen below, a multiply instruction for an 
ARM ISA essentially has the same syntax as a multiply instruction for the MIPS ISA. 

 

 
 

2. You should become comfortable with interpreting machine code for different microprocessor 
architectures. 
o A goal of this course is not to teach you MIPS or ARM assembly, but rather to (a) 

understand how the machine instructions for a RISC-like ISA accomplish some set of tasks 
specified by High-Level Language (HLL) code and (b) understand how changing code 
written in some HLL and/or a given processor-memory configuration can affect performance.  
 

3. ARM microprocessors are used everywhere.  Thus, the microprocessor configurations and 
benchmarks that we will work with in lab are very representative of hardware you use, and 
programs that you run everyday. 

 

3. Benchmarks and processor configurations that we will study 
3.1 Benchmarks: 
Different benchmark suites exist that allow a user to test a processor/memory configuration 
with a workload that is representative of how that processor/memory configuration might 
actually be used.   
 
For example, a common benchmark suite called SPEC is representative of what might be used for 
desktop-like workloads. Example programs in this suite include gcc (i.e. a compiler), perl (i.e. an 
interpreter), vortex (a database program), gzip (a compression tool), and parser (a grammar checker). 
 
In this lab we’ll use a benchmark suite called MiBench1. MiBench is representative of functions that a 
microprocessor in an embedded system (a sensor, iPhone, iPod, e-Reader, etc.) might perform. The 
MiBench suite itself contains 35 benchmarks in 6 different classes – but we just concentrate on 3 of the 
benchmarks.  Each benchmark will consist of a small dataset input and a larger dataset input (i.e. a 
small MP3 to encode and a large MP3 to encode).  
 
The 3 benchmarks that we will work with in this lab are summarized on the next page. 
 
 
 
 

                                                
1 MiBench: A free, commercially representative embedded benchmark suite,” M.R. Guthas, et. al. 
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 Figure 1-2: ARM7TDMI core
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ARM and Thumb-2 Instruction Set
Quick Reference Card

Operation § Assembler S updates Action Notes
Multiply Multiply MUL{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0] (If Rm is Rd, S can be used in Thumb-2) N, S

and accumulate MLA{S} Rd, Rm, Rs, Rn N Z C* Rd := (Rn + (Rm * Rs))[31:0] S
and subtract T2 MLS Rd, Rm, Rs, Rn Rd := (Rn – (Rm * Rs))[31:0]
unsigned long UMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs) S
unsigned accumulate long UMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs) S
unsigned double accumulate long 6 UMAAL RdLo, RdHi, Rm, Rs RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)

Signed multiply long SMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs) S
and accumulate long SMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs) S
16 * 16 bit 5E SMULxy Rd, Rm, Rs Rd := Rm[x] * Rs[y]
32 * 16 bit 5E SMULWy Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16]
16 * 16 bit and accumulate 5E SMLAxy Rd, Rm, Rs, Rn Rd := Rn + Rm[x] * Rs[y] Q
32 * 16 bit and accumulate 5E SMLAWy Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs[y])[47:16] Q
16 * 16 bit and accumulate long 5E SMLALxy RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]

Dual signed multiply, add 6 SMUAD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q
and accumulate 6 SMLAD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q
and accumulate long 6 SMLALD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]

Dual signed multiply, subtract 6 SMUSD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q
and accumulate 6 SMLSD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q
and accumulate long 6 SMLSLD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]

Signed top word multiply 6 SMMUL{R} Rd, Rm, Rs Rd := (Rm * Rs)[63:32]
and accumulate 6 SMMLA{R} Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs)[63:32]
and subtract 6 SMMLS{R} Rd, Rm, Rs, Rn Rd := Rn – (Rm * Rs)[63:32]

with internal 40-bit accumulate XS MIA Ac, Rm, Rs Ac := Ac + Rm * Rs
packed halfword XS MIAPH Ac, Rm, Rs Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]
halfword XS MIAxy Ac, Rm, Rs Ac := Ac + Rm[x] * Rs[y]

Divide Signed or Unsigned RM <op> Rd, Rn, Rm Rd := Rn / Rm <op> is !"#$ (signed) or %"#$ (unsigned)
Move
data

Move MOV{S} Rd, <Operand2> N Z C Rd := Operand2 See also Shift instructions N
NOT MVN{S} Rd, <Operand2> N Z C Rd := 0xFFFFFFFF EOR Operand2 N
top T2 MOVT Rd, #<imm16> Rd[31:16] := imm16, Rd[15:0] unaffected, imm16 range 0-65535
wide T2 MOV Rd, #<imm16> Rd[15:0] := imm16, Rd[31:16] = 0, imm16 range 0-65535
40-bit accumulator to register XS MRA RdLo, RdHi, Ac RdLo := Ac[31:0], RdHi := Ac[39:32]
register to 40-bit accumulator XS MAR Ac, RdLo, RdHi Ac[31:0] := RdLo, Ac[39:32] := RdHi

Shift Arithmetic shift right ASR{S} Rd, Rm, <Rs|sh> N Z C Rd := ASR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ASR <Rs|sh> N
Logical shift left LSL{S} Rd, Rm, <Rs|sh> N Z C Rd := LSL(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSL <Rs|sh> N
Logical shift right LSR{S} Rd, Rm, <Rs|sh> N Z C Rd := LSR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSR <Rs|sh> N
Rotate right ROR{S} Rd, Rm, <Rs|sh> N Z C Rd := ROR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ROR <Rs|sh> N
Rotate right with extend RRX{S} Rd, Rm N Z C Rd := RRX(Rm) Same as MOV{S} Rd, Rm, RRX

Count leading zeros 5 CLZ Rd, Rm Rd := number of leading zeros in Rm
Compare Compare CMP Rn, <Operand2> N Z C V Update CPSR flags on Rn – Operand2 N

negative CMN Rn, <Operand2> N Z C V Update CPSR flags on Rn + Operand2 N
Logical Test TST Rn, <Operand2> N Z C Update CPSR flags on Rn AND Operand2 N

Test equivalence TEQ Rn, <Operand2> N Z C Update CPSR flags on Rn EOR Operand2
AND AND{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND Operand2 N
EOR EOR{S} Rd, Rn, <Operand2> N Z C Rd := Rn EOR Operand2 N
ORR ORR{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR Operand2 N
ORN T2 ORN{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR NOT Operand2 T
Bit Clear BIC{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND NOT Operand2 N

32-bit ARM 

not unlike 

32-bit MIPS!

MIPS:  Mul $9, $7, $8   # mul rd, rs, rt: RF[rd] = RF[rs]*RF[rt]!

http://www.arm.com/images/armpp/nook2_%281%29.jpg!http://www.arm.com/images/pro-A7TDMI-s.gif!

http://www.arm.com/products/processors/technologies/instruction-set-architectures.php!

Simplified (16-bit) ARMs available too!



Ispell 
	  

Benchmark class  
The Office applications are primarily text manipulation algorithms to represent office machinery like 
printers, fax machines and word processors. The PDA market mentioned in the Consumer category 
also relies heavily on the manipulation of text for data organization. 

Benchmark description 
Ispell is a fast spelling checker that is similar to the Unix spell, but faster. It supports contextual spell 
checking, correction suggestions, and languages other than English. The input consists of a small and 
large document from web pages. 
What to look for… 
In the output text file, you will see suggestions for words that are misspelled, mis-hyphenated, etc. For 
example, look for the word “instrment” when examining the benchmark output for the small input file. 

	  
Lame 
	  

Benchmark Class 
The Consumer Devices benchmarks are intended to represent the many consumer devices that have 
grown in popularity during recent years like scanners, digital cameras and Personal Digital Assistants 
(PDAs). The category focuses primarily on multimedia applications with the representative algorithms 
being jpeg encoding/decoding, image color format conversion, image dithering, color palette reduction, 
MP3 encode/decoding, and HTML typesetting. 
Benchmark description 
Lame is an MP3 encoder that supports constant, average and variable bit-rate encoding. It uses small 
and large wave files for its data inputs. 
What to look for…  
You should be able to play the output MP3 file in a standard MP3 player.  You can also use the output 
of this benchmark as an input to the MP3 decode benchmark in MiBench (mad) – although this is not 
required.  Note that this benchmark will probably take the longest to run. 

 
Patricia 
	  

Benchmark Class 
The Network category represents embedded processors in network devices like switches and routers. 
The work done by these embedded processors involves shortest path calculations, tree and table 
lookups and data input/output. 
Benchmark description 

A Patricia trie is a data structure used in place of full trees with very 
sparse leaf nodes. Branches with only a single leaf are collapsed 
upwards in the trie to reduce traversal time at the expense of code 
complexity. Often, Patricia tries are used to represent routing 
tables in network applications. The input data for this benchmark is 
a list of IP traffic from a highly active web server for a 2 hour 
period. The IP numbers are disguised.  See example of text 
Patricia trie in this box. 

What to look for… 
The acronym PATRICIA stands for: “Practical Algorithm To Retrieve Information Coded In 
Alphanumeric".  When you run this benchmark, there will be a search for the IP addresses in the input 
file.  When each is found, this will be noted as output. 



3.2 Processor Configurations: 
In this lab, you will use two Simplescalar configuration files that describe two commercial ARM 
microprocessors:  the StrongARM and the XScale (the successor to the StrongARM).  StrongARM 
chips were/are used in cell phones, PDAs, etc.  Similarly, various versions of the XScale core are used 
in various Blackberry devices from Research in Motion, Amazon’s Kindle e-reader, etc. 
A brief comparison of the StrongARM architecture to the XScale architecture is given in Table 1. 
 

Table 1:  Comparison of StrongARM to XScale processor. 
Design Parameter StrongARM XScale Comment 
# of Integer ALUs 1 1  
# of Integer Multiplier/Dividers 1 1  
# of Floating Point ALUs 1 1  
# of Floating Point 
Multiplier/Dividers 

1 1  

Amount of on-chip memory 16 KBytes 32 Kbytes The XScale has 2X the amount of faster, 
on-chip memory 

Time required to access on-chip 
memory 

1 CC 1 CC The time required to access faster, on-
chip memory is the same on the 
StrongARM and the XScale 

Time required to access off-chip 
memory 

64 CCs 32 CCs The time required to access off-chip 
memory is 50% lower on the XScale 

Bandwidth between 
microprocessor and off-chip 
memory 

32 Bits 64 Bits The bandwidth between the 
microprocessor and off-chip memory is 
2X higher with the XScale 

 
Note that unless you attempt to answer an extra credit question or wish to change the name of the file 
that simulation output is written to, you will not need to edit the configuration files for this lab as they are 
included with the benchmark directory hierarchy that you will copy over from the course AFS space. 
 
4. How to setup & use the SimpleScalar / Mibench simulation environment 
4.1 Preparing to run the Mibench suite with SimpleScalar: 
1. The SimpleScalar executable will need to be run on a linux machine.  For a list of machines that you 

should be able to log in to and use, see Appendix A. Thus, to get started: 
o Using a terminal program, log on to a linux machine.   

 
2. Copy the directory listed below (from the course directory) into your home directory. 

o /afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/01/lab_benchmarks 
 

o The directory “lab_benchmarks” contains processor configuration files and scripts that are 
needed to run each benchmark.  The scripts were included so that you do not have to spend an 
excessive amount of time determining what arguments a particular benchmark takes to run. The 
scripts will invoke the SimpleScalar simulation engine with the pre-compiled MiBench 
executables and any necessary benchmark input files. 

 
3. Next, update your path to point to the SimpleScalar executable.  The executable can be found at: 

o /afs/nd.edu/coursefa.11/cse/cse30321.01/arm/simplesim-arm 



o It is called “sim-outorder” 
 

o To update your path (i.e. so that you can run the simulator just by typing “sim-outorder” from the 
command line) add the following line to your .cshrc file: 

 
setenv PATH /afs/nd.edu/coursefa.11/cse/cse30321.01/arm/simplesim-arm:$PATH 

 
o Additionally, we will also use an extension to SimpleScalar called “sim-panalyzer” that estimates 

the average power required to execute a given benchmark.  To use this executable, you should 
update your path with the line. 

 
setenv PATH /afs/nd.edu/coursefa.11/cse/cse30321.01/arm/sim-panalyzer/PA2.0.3/Implementations/ARM/sim-panalyzer-2.0:$PATH 

 
4.2 Running a SimpleScalar simulation: 
Benchmarks will ultimately be run with small and large datasets assuming a StrongArm and XScale 
datapath. For example, to use SimpleScalar to run the ispell benchmark on the StrongArm datapath 
with a large dataset, simply: 
 
 Go to the directory:     ~/lab_bechmarks/ispell/large/sa1/ 
 At the command prompt, type: ./ispell_large_sa1 
 
The simulation will begin, and the output will be written to a text file.  The name of the text file is 
specified in the first entry in the configuration file (i.e. sa1core_large.cfg in the directory above): 

 
 # redirect simulator output to file (non-interactive only) 

-redir:sim                 sa1core_large.txt 
 

o Thus, if you want the simulation output to go do a different file, just change this file name. 
 

Note that each simulation will take ~1-30 minutes to run. 
 
4.3 Preparing to use the SimpleScalar cross compiler: 
1. In this lab, we will also use the SimpleScalar cross compiler – which allows you to compile C-code 

into ARM assembly such that it can be analyzed within the SimpleScalar environment.   
 

In other words, you can also use this tool to see how your own code’s performance might be 
impacted by an architectural change and/or see the benefit of specific coding techniques for more 
efficient execution. 
 
o Again, it will be helpful if you update your path to include the arm-gcc executable.  
o To update your path (i.e. so that you can just type “arm-gcc” from the command line) add the 

following line to the path in your .cshrc file: 
 
setenv PATH /afs/nd.edu/coursefa.11/cse/cse30321.01/arm/cross-compiler/gcc-4.1.1-glibc-2.3.2/arm-unknown-linux-gnu/bin:$PATH 

 
After all path updates have been made, be sure to type “source .cshrc” 

type “which sim-outorder” (for example) to check to see if this was done correctly 
 

 



2. Thus, to compile any C-code so that it can be studied within the SimpleScalar environment, you can 
simply type:   

 
 > arm-gcc foo.c –o foo –static           (must use static flag; libraries cannot be dynamically linked) 
 
3. To run this program in the SimpleScalar environment you can simply type: 
 
 >  sim-outorder –config sa1core.cfg foo 
 
4.4 Analyzing the results of a SimpleScalar simulation: 
o When you look at the simulation results (i.e. sa1core_large.txt) you will see LOTS of data.  Some 

data will be more understandable later in the semester, while other data would make more sense 
after you take Computer Architecture II.  However, there should be several lines in the file that are 
quite familiar.  For example: 
 

o sim_num_insn            1588563478   # total number of instructions committed 
o sim_num_loads            259741195   # total number of loads committed 
o sim_num_stores        184385892  # total number of stores committed 
o sim_num_branches         147474085   # total number of branches committed 
o sim_CPI                       1.5260   # cycles per instruction 

 
o You may also want to pay attention to a few other lines too.  For example: 

o dl1.accesses               435160624   # total number of [data] accesses 
o dl1.hits                    435071297   # total number of hits 
o dl1.misses                    89327    # total number of misses 
o dl1.miss_rate                 0.0002   # [data] miss rate (i.e., misses/ref) 
o il1.accesses              1265769872   # total number of [instruction] accesses 
o il1.hits                   1265384028   # total number of [instruction] hits 
o il1.misses                    385844   # total number of [instruction] misses 
o il1.miss_rate                 0.0003   # [instruction] miss rate (i.e., misses/ref)  
For example, the first 4 data items tell you how often data for a load or store instruction is found 
In “fast” memory.  If there is a “miss”, then we must look for data in a “slower” level of memory.  
The “miss_rate” tells you how frequently a slower memory access is required.  The second 4 
items tell you how often an instruction encoding is found in fast memory (i.e. a “fetch”). 

 
Also, in the directory: /afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/01/ there is a simple script – 
parse_Stats – that you can use to parse an output text file to extract all of the information / data that 
you will need to answer the questions in this lab 

o (If you change the output file naming convention, you may need to modify this slightly.) 
 

 
 
 
 
 



Problem A 
Question A.1: 
Run the MiBench benchmarks discussed above assuming a StrongARM configuration and an XScale 
ARM configuration.  Using simulation output from each benchmark, complete Table 2 below.  Assuming 
that processor clock rates are the same, how does the more sophisticated (XScale) design affect 
speedup?  (Try to comment on the suite as a whole, not just benchmark by benchmark.) 

 
Table 2:  Performance of benchmarks for small and large data sets given different configurations. 

 
StrongARM 
small input 

XScale 
small input 

Speedup 
StrongARM 
large input 

XScale 
large input 

Speedup 

Ispell       

Lame       

Patricia       

 
Question A.2 
What if the clock rates for the StrongARM configuration and XScale configuration are different – i.e. the 
clock rate for the StrongARM is X and the clock rate for the XScale is Y?  Is speedup affected?  If so, 
how?  (Again, try to comment on the suite as a whole, not just benchmark-by-benchmark.) 
 
Question A.3 
Do any benchmarks seem to especially benefit from the more sophisticated XScale configuration?  If 
so, why do you think this is the case?  And if so, try to support your conclusion with simulation data.  
(You might reference the discussion that compares and contrasts the StrongARM and XScale 
configurations.  You might also reference some of the other data metrics that I discussed above.) 
 
A.Extra Credit 
For the benchmark where there is the biggest performance gap between the StrongARM design and 
the XScale design, create a hybrid configuration file and re-run the benchmark to see if there is a 
significant change if you alter the StrongARM architecture.  How is performance affected? 
 

Problem B 
In this problem, you should begin to see how the way you write code in a HLL can significantly impact 
the time it takes for a microprocessor to actually run it – and in some instances, very inefficient looking 
code may end up giving you better performance. 
 
For all of the questions in this problem, use the same processor configuration file provided at: 
 

/afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/01/xscale.cfg 
 
Using the skeleton provided (see path below) as a guide, write a simple C program with two for loops – 
the first of which runs for 1,000,000 iterations, and the second of which runs for 9,000,000 iterations. 
 

/afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/01/if_else.c 



 
o Within each loop, you should write an if – else if – else statement that checks to see whether 

or not 1 of 10 different conditions is met. 
 

o The test condition is randomly generated. 
 

o In the first loop, the default case will NEVER be met.  For the second loop, the random 
number is updated so that the default case is ALWAYS met.  (This is just an easy way to 
mimic a situation where the default case is likely to occur 90% of the time, and another case 
will occur the other 10% of the time.) 

 
o Note that in the skeleton code, the default case is checked first. 

 
Question B.1 
Compile your completed program with the SimpleScalar cross compiler and, using data from a 
SimpleScalar simulation, calculate the execution time assuming that the clock rate is 500 MHz. 
 
Question B.2 
Now, re-write your code such that default case is checked last.  Again, compile your completed 
program with the SimpleScalar cross compiler and, using data from a SimpleScalar simulation, 
calculate the execution time assuming that the clock rate is 500 MHz. 
 
Question B.3 
Compare and contrast the execution times calculated in Questions B.1 and B.2.  Using output from the 
simulation (again, you can leverage the parse_Stats script), explain any differences and why you 
believe one version outperforms the other. 
 
Question B.4 
Finally, re-write you code such that the if – else if – else code is replaced with a switch statement – but 
where the default case is still considered last.  Again, compile your completed program with the 
SimpleScalar cross compiler and, using data from a SimpleScalar simulation, calculate the execution 
time assuming that the clock rate is 500 MHz.  Comment on the performance of this code when 
compared to the versions studied in Questions B.1 and B.2.  Explain any differences and why you 
believe one version outperforms the other.  (One way to answer this question would be to think about 
how the if-else gets compiled when compared to the switch statement code.) 
 

Problem C 
This problem is very similar to Problem B – but we’ll look at some slightly different code. 
More specifically, the SAXPY loop is a common routine in linear algebra and a common fixture in 
benchmark suites.  SAXPY stands for “Single-precision real Alpha X Plus Y” and is a combination of 
scalar multiplication and vector addition.  Quite simply, the routine is as shown below – and is common 
in many applications – including scientific code. 
 
 for (i=0; i<N; i++) 
  q[i] = A * x[i] + y[i]; 

 



In this problem, we will consider several ways in which this code might be re-written – and will analyze 
its performance with SimpleScalar. Again, for all of the questions in this problem, use the same 
processor configuration file provided at: 
 

/afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/01/xscale.cfg 
 

Additionally, an initial version of this code is provided at: 
 

/afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/01/loop.c 
 

Question C.1 
Compile the initial version of SAXPY with the SimpleScalar cross compiler and, using data from a 
SimpleScalar simulation, calculate the execution time assuming that the clock rate is 500 MHz. 
 
Question C.2 
We will now apply a technique called loop fusion.  Simply put, we will combine loops.  To understand 
how loop fusion can impact performance, combine the first two for loops in the initial version of SAXPY 
into one, recompile this version of SAXPY with the SimpleScalar cross compiler and, using data from a 
SimpleScalar simulation, calculate the execution time assuming that the clock rate is 500 MHz. 
 
Question C.3 
Next, we will apply a technique called loop unrolling.  When a loop is “unrolled”, N identical copies of 
the loop body are placed within the loop, and the loop counter is updated accordingly.  Unroll the two 
loops in the version of SAXPY that you generated for Question C.2 so that 10 initializations and scalar 
multiplication / vector addition are done during each pass.  Recompile this version of SAXPY with the 
SimpleScalar cross compiler and, using data from a SimpleScalar simulation, calculate the execution 
time assuming that the clock rate is 500 MHz. 
 
Question C.4 
Compare and contrast the 3 versions of SAXPY.  Which performs best?  Why? Support your answer 
with SimpleScalar simulation output. 
 

Problem D 
It is important to understand that better performance may not mean “faster execution time / lower 
latency.” For example, one architecture may be considered advantageous over another if it can offer 
comparable – yet slower – execution time, and if battery life is significantly improved. 
 
In the last part of this lab, you should rerun the lame benchmark (with small data sets) assuming the 
StrongARM and XScale ARM configurations.  To run the benchmarks, you can use the same scripts / 
files that were used in Problem A.  However, the “sim-panalyzer” executable should be used instead of 
“sim-outorder”. 
 
Record the average power. 

o To find this in the output text file, type:  “more <output.txt> | grep ‘uarch.avgpdissipation’ 
o (Note that the units of the number provided are Watts) 

 
 



Question D.1 
Assume that for both configurations the microprocessor’s clock rate is 233MHz.  Calculate the 
execution time for the lame benchmark.  Sim-panalyzer will call a slightly different version of sim-
outorder, therefore the CPI values between Problems A and C may not be exactly the same. 
 
Question D.2 
Compare the differences in execution time to the average amount of power required for each 
benchmark given each configuration.  From the standpoint of battery life, do you think that the more 
sophisticated design is worthwhile for these two benchmarks? 
 

What to turn in: 
You should complete a typed report with answers to: 
- Questions A.1 – A.3 
- Questions B.1 – B.4 
- Questions C.1 – C.4 
- Questions D.1 – D.2 
 
Appendix:   
Linux machines you can use 

o student0{0,1,2,3}.cse.nd.edu 
o i.e. student 01@cse.nd.edu 

o Also, see the list of machines at: 
o http://crcmedia.hpcc.nd.edu/wiki/index.php/Linux_Cluster_Host_List 

 
How to keep benchmarks running after you’ve logged out… 

o To learn how to keep benchmarks running after you have logged out, see the link on the course 
website next to the lab handout link. 
 


