
CSE 30321 –  Computer Architecture I – Fall 2011 
 

Lab 03: Datapath Design and Performance 
Total Points: 50 points 
Assigned:   October 4, 2011 
Due:    October 27, 2011 

 
1. Goals and Description 
 
There are 3 main components to this lab: 
 

o In Part 1, you will be asked to augment the multi-cycle MIPS datapath to support a new 
addressing mode. 
 

o Part 2 will consider the importance of predicting the outcome of a branch instruction in a 
pipelined datapath.  If a pipeline is required to stall until the outcome of a branch instruction is 
known, there will be a significant, and undesirable impact on performance. In part 2, you’ll 
quantify this impact using the MP3 encoding benchmark as a case study.  You’ll also consider 
several branch prediction schemes that can help to improve the performance of a pipelined 
datapath. 

 
o Finally, in Part 3, we will consider an architectural-level performance metric that is becoming 

increasingly important – namely energy per operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Addressing Modes – 15 points 
 
Background: 
There are 5 different ways that MIPS instructions can address the register file OR memory.  (These are 
summarized below – although for additional information, see p. 132-33 of your textbook.) 
 

1. Immediate Addressing:  the operand is a constant within the instruction 
• (e.g. addi $2, $3, 10) 

2. Register Addressing:  the operand is in a register 
• (e.g. add $2, $3, $4) 

3. Base (or displacement) Addressing:  the operand is at the memory location whose address is 
the sum of a register and a constant in the instruction 

• (e.g. a lw or sw instruction) 
4. PC-relative Addressing:  the branch address is the sum of the PC and a constant in the 

instruction 
• (e.g. a beq instruction) 

5. Psuedo-direct Addressing:  the jump address is 26 bits of the instruction concatenated with the 
upper bits of the PC 

• (e.g. like a j instruction) 
 
However, these are not the only ways that an instruction could address the register file or memory. 
Notably, the ARM ISA may leverage the indexed addressing modes – the syntax of which is shown 
below in Table 1.  Note that this addressing mode might also be useful for array addressing.  
 

Table 1:  Displacement vs. Indexed addressing modes. 
 

Addressing Mode Example 
Instruction 

Meaning When Used 

Displacement Add R4, 100(R1) R4 ß R4 + Mem[100+R1] Accessing local 
variables 

Indexed Add R3, (R1+R2) R3 ß R3 + Mem[R1+R2] Array addressing; R1 = 
base of array, R2 = 
index amount 

 
Problem: 
Augment the MIPS multi-cycle datapath and finite state diagram to support the indexed addressing 
mode described above.  Your answer should be supported with an augmented datapath and finite state 
machine diagram. 
 
Useful Notes: 
o I have posted copies of the datapath diagram and finite state diagram on the course website 

o (the link is next to the Lab 03 handout link) 
o I strongly suggest that you follow the procedure/approach discussed in Lecture 12 
o If new control signals are needed, you do not have to augment the states associated with other 

instructions with these signals 
o If helpful, you can assume the following: 

o The instruction encoding can be the same as the MIPS R-type (with the shamt and function 
code fields just ignored). 

o Your mnemonic / RTL might look like: 
o lw-index $x, $y, $z  # $x ß Memory[$y + $z] 

 



3. Branch Prediction and Pipelining – 20 points 
 
Background: 
As discussed in lecture, predicting the outcome of a branch instruction is of the utmost importance 
when moving to a pipelined datapath.  On average, every 6th instruction will be some kind of a branch.  
Using the 5-stage MIPS pipeline as context (and assuming that 3 clock cycles are required to fetch the 
instruction, decode the instruction, and test to see whether or not the branch condition is met), as seen 
in Lecture 13, branch instructions can degrade the ideal CPI associated with pipelining (i.e. 1).  For 
example, if we always had to stall for a branch, the new baseline CPI of the MIPS pipelined datapath 
would immediately reflect a 50% performance degradation: 
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To try to mitigate the negative effects that branch instructions can have on a pipelined datapath, it is 
actually quite common to try and predict the outcome of a branch instruction (i.e. what instruction 
should be fetched next) and start it down the pipeline.  There are a few approaches that one could take 
(aside from simply stalling the pipeline).  

1. We could always predict that the branch will NOT be taken – so the next instruction that will be 
fetched and started down the pipeline is just at PC + 4.  In a sense, this is a better option than 
just stalling the pipeline.  If we assume that 50% of the time a branch is taken, and 50% of the 
time a branch is not taken, at least one half of the time, we’ll be starting useful work – and for 
the other half of the time, the impact on the performance of the pipelined datapath will be no 
worse than if we just stalled the pipeline! 

CPIpredict−not  taken =1+ 1
6
"

#
$
%

&
'(0.5)(3 CC) = 1.25 CC  

 
2. A second approach involves keeping a “selective history” of all instructions that are executed.  

This “history” can be referenced during the fetch and decode stages of the pipeline. 
 

• In the fetch stage of the pipeline, the current value of the PC is compared against a small 
table – the branch target buffer (BTB) – that contains the last N PC values that were 
branch or jump instructions.  If there is a match, the PC value is updated with the 
predicted address rather than PC + 4.  (See below) 

 

 
 

• In the next stage of the pipeline, a more careful prediction is made:  
• After a branch instruction is processed for the first time, some information about 

it is recorded in a branch history table (BHT)  
• Each entry in the BHT might consist of several bits of information that are used 

to make a prediction – i.e. an entry might be the value of the 2-bit counter 
discussed in class. 
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• The BHT prediction is generally more accurate – and contains many more 
entries – than the BTB prediction.  If the predictions differ, the BHT 
prediction would override the BTB prediction. 

• Similarly, if we discover in the decode stage that our instruction was a 
branch, no entry was found in the BTB, and our BHT predicts that the 
branch will be taken, we can start fetching instructions from the address 
that was just calculated in the decode stage. 

• If the prediction suggests that the branch will not be taken, instructions in 
the pipeline can proceed as normal.  

• As an example: 
a. Assume that a branch equal instruction was fetched from address 

2000010, and that the BHT has 128 entries 
b. Thus, this particular instruction would map to BHT entry 32. 

• (20000 modulo 128 = 32) 
c. The data in the table entry represents the prediction.  

• After the branch outcome is determined in the execute stage of the pipeline, (i) the BTB 
and BHT would be updated accordingly, and (ii) if necessary, the pipeline would be 
flushed and the correct instruction started.  

Note that a modern desktop or high-performance microprocessor will almost certainly involve a 
sophisticated “branch predictor,” and successful prediction rates of ~95% are common – although it’s 
almost impossible to achieve “perfect” branch prediction. Why? If the instructions at addresses 2000010 
and 2128010 were both branches – they would both map to BHT entry 32.  In essence, there would be a 
conflict, and 1 instruction might make predictions based on the history of a second instruction.  The 
branch predictor also needs time to “warm up”. 
  
Simulating how branch prediction impacts performance: 
You can change the branch prediction mechanism in a SimpleScalar simulation to see how different 
branch prediction methods impact performance.  (The datapaths that you worked with in Lab 01 are 
pipelined, so there is a good mapping to Lab 01 and this problem.) We’ll look at how 6 different branch 
prediction schemes can impact performance in the remainder of this lab.  They are:  

1. Always stalling 
o (Thus, no prediction is made, and we just stall the pipeline.)  

2. Predicting that the branch is not taken 
o (So, in other words, we just fetch the next instruction.)  

3. A bimodal branch predictor 
o This is essentially the 2-bit predictor discussed in class and above  

4. A 2-level branch predictor  
o This is an example of a more sophisticated branch prediction scheme where a prediction 

is made based on (i) the current value of the PC and (ii) whether or not recent branch 
instructions around the current instruction were taken or not taken.  (Thus, this approach 
looks at what a given instruction did the last time it was encountered, as well as what 
surrounding instruction did the last time they were encountered.)  

o The hardware required to implement this predictor is similar to the hardware required to 
implement the bimodal predictor. The main difference is that we add a global shift 
register which keeps track of what the last N branch instructions did. 

 
 
 



o As an example, assume we have the following 3 instructions:  
Address Instruction Will be taken / 

not taken 
Shift register with branch 
history (before) 

Shift register with branch 
history (after) 

100010 BEQ Taken 0000 0001 
101610 BEQ Not Taken 0001 0010 
1100 BEQ Taken 0010 0101 

 
If a branch is taken, a 1 is shifted into the global shift register; otherwise, a 0 is shifted in.  
This history is concatenated with M bits of the PC – and is used to index the BHT. In this 
problem, we’ll assume a shift register with 8 bits (thus, the last 8 branch instructions are 
tracked) and a 2048 entry branch history table.  

5. A combination branch predictor 
o Generally speaking, this approach combines multiple branch prediction schemes, and 

makes a final decision by majority vote.  
6. Assuming perfect branch prediction 

o (For this option, every branch is correctly predicted; again, this is practically impossible – 
but is a useful simulation option to have as it allows you to quantify the impact that mis-
predicted branches have on a pipelined datapath.)  

FYI: What do real chips do? 
The Intel Pentium III used a 512 entry BTB and a 2-level branch history algorithm.  The AMD K6 
processor also uses a 2-level branch history algorithm with a 8192 entry BHT.  Finally, the Motorola 
Power PC leveraged a 512 entry BHT and a 64 entry BTB.  Thus, what you are studying is 
representative of “real hardware.”  
Simulating how branch prediction impacts performance: 
Here, you will need to look at how 6 different “prediction” options impact the MP3 encode benchmark.  
You only need to consider the small dataset. See Appendix A for a short description of how to change 
what prediction is used. A script and configuration file are provided at:  

/afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/03/  
 
 
Part 3.A:  (4 points) 
Using the XScale configuration file, use SimpleScalar to complete Table 2: 
 

Table 2:  Execution time of Mad assuming different branch prediction schemes.  
 Always Stall Not Taken Bimodal 2-level Combination Perfect 
Mad 
(small 
input) 

      

 
Part 3.B:  (8 points) 
Quantitatively, if we always have to stall the pipeline if a branch instruction occurs, what is the 
performance impact when compared to the ideal case?     
Part 3.C:  (8 points) 
Which branch predictor performs best?  Given your results, how well do you think branch predictors do 
in mitigating performs hits in pipelined datapaths?    



4. Energy Efficiency – 15 points 
 
Background: 
As we have discussed throughout the semester so far, the best way to compare one computer 
architecture to another is to consider how long it takes to run a common benchmark (i.e. we compare 
execution times).  However, the energy efficiency of a given architecture has rapidly become an equally 
important measure of comparison.   
 
Why is this the case? Let’s look at some data from some real computers at Oak Ridge National 
Laboratories (ORNL). “Scientists and engineers at ORNL conduct basic and applied research and 
development to create scientific knowledge and technological solutions that strengthen the nation's 
leadership in key areas of science; increase the availability of clean, abundant energy; restore and 
protect the environment; and contribute to national security.”1   Table 1 details the power requirements 
for all of the computers at Oak Ridge National Laboratories.  Note that data is broken up into the power 
requirements to run the computers, and the power requirements to cool the building where the 
computers reside. 
 

Table 1:  Power Requirements for computers at ORNL 
 

Year Computers (MW) Cooling (MW) 
2005 1.5 1 
2006 3.5 2 
2007 11 9 
2008 20 17 
2009 28 22 
2010 38 30 
2011 47 40 

 
Before continuing, it is worth mentioning that the numbers above are fairly representative for other large 
computing structures too.  For example, the data center that Microsoft recently opened in Chicago 
needs about 40 MW of power annually to operate and “serves as the guts behind Microsoft’s online 
ambitions, from Bing to Hotmail to Windows Azure [the company’s new on-line operating system].”2     
 
The magnitude of these power budgets suggests some problems: 

1. It becomes increasingly problematic / expensive to supply the power required for operation.  As 
a point of reference, the output of a nuclear reactor is on the order of ~1000 MW! 

2. As power is analogous to heat, the practical costs of cooling a data center or computing facility 
must be taken into account. 

 
Additionally, as more and more information processing moves to mobile devices, battery life has also 
become an important design driver.  
 
For all of the above reasons, metrics such as execution time per Joule have become important. 
 
 
 
 
 
                                                
1 From: http://www.ornl.gov/ornlhome/about.shtml 
2 From http://news.cnet.com/8301-13860_3-10364746-56.html 



Questions: 
In the remainder of this lab, we’ll consider the energy efficiency of different branch predictors.  Based 
on the data provided in the table below – CPI, instruction count, and average power for the ispell 
benchmark with a small dataset – answer the questions below. 
 
 

Predictor CPI # 
instructions 

µArch 
power (W) 

Comb 
2K entry 
BHT,  
8-bit SR 

0.6563 19,509,907 0.9881 

Bimodal 
128K entry 
BHT 

0.6832 19,509,792 1.3279 

Bimodal 
64K entry 
BHT 

0.6825 19,509,970 1.1536 

Bimodal  
2K entry 
BHT 

0.6832 19,509,935 0.9842 

2-level  
2K entry 
BHT,  
8-bit SR 

0.7166 19,510,009 0.9350 

2-level 
1K entry 
BHT, 
8-bit SR 

0.7365 19,509,749 0.9345 

Not taken 
 

1.399 19,509,376 0.5797 

 
 
 
 
Part 4.A:  (7 points) 
Assuming a 233 MHz clock rate, what branch prediction approach is the most energy efficient?  Why do 
you think this is the case?  To support your answer, you might determine which prediction scheme 
leads to the most efficient execution time, which prediction scheme is the most energy efficient, which 
prediction scheme leads to the higher number of instructions per Joule, etc. 
 
 
 
Part 4.B:  (8 points) 
The average power associated with the not taken strategy is significantly lower than all other 
approaches.  Do these power savings translate to energy savings for the benchmark?  If you think that 
the power savings do translate to energy savings, explain why.  Similarly, if you think they do not, 
explain why. 
 
 
 
 
 
 
 



5. What to Turn In 
You should turn in a typed report with answers to the questions listed above.  Be sure to include 
augmented datapath and finite state machine diagrams for the problem discussed in Section 2. 
 
Appendix 
To run a benchmark with a different branch predictor, simply edit the following line in the configuration 
file: 
 

# branch predictor type {nottaken|taken|perfect|bimod|2lev|comb} 
-bpred                        bimod 

 
Thus, to run the benchmark assuming that braches are not taken, simply change “bimod” in the second 
line to “nottaken”.  (Similarly, to run a benchmark assuming that all branches are taken or all predictions 
are perectly made, just change “bimod” to “taken” or “perfect” respectively.) 
 
To mimic the “always stall” case, use the “not taken” case, and edit the following line… 
 
 # extra branch mis-prediction latency 

-fetch:mplat                      0 
 
…by changing “0” to “3”. 
 
Each benchmark should take approximately 1 minute to run. 


