
CSE 30321 – Computer Architecture I – Fall 2011
Lab 05 – Applying knowledge of underlying hardware (i) write more efficient code and

(ii) to efficiently program multicore chips
Assigned: November 15, 2011 – Due: December 1, 2011 – Points: 100

1. Introduction:
At a high-level, the purpose of this lab is to further illustrate how (i) knowledge of underlying processor
hardware and (ii) system-level benchmarking can lead to more efficient code – and hence faster run
times for programs that are important to the end user.

• More specifically, Part 1 of this lab will focus on caching hardware. You will study how changing
and “tuning” code that you write – to effectively use available cache hardware – can have a non-
negligible impact on ultimate program run time (i.e. CPU time).

• Part 2 of this lab will introduce you to how multi-core computer architectures can impact system-
level performance, as well as conventional “coding.” More specifically, we will work with a
recursive mergesort algorithm – where a dataset will be sorted on both single and N-core
machines. You will see that by understanding what the underlying (multi-core) architecture
looks like, it is possible to write more efficient code. You will also see that performance
evaluation techniques learned in previous lectures / used in previous assignments are just as
relevant to multi-core processing too.

2. Alternative Matrix Multiplies
An understanding of an underlying processor-memory architecture can actually make you a better
programmer. In this problem, we’ll use matrix multiply code as a case study. (Matrix multiplies are
common in scientific computing, graphics transformations, etc.)

2.1 Different Matrix Multiplies:
For this problem, you will study code that will multiply the same 2 matrices together – but in two
different ways. To get started, copy the “matrix_multiply” directory to your AFS space (see path below).

/afs/nd.edu/coursefa.11/cse/cse30321.01/Labs/05/matrix_multiply

In this directory, there are 2 sub-directories: “no_blocking” and “blocking”. Each sub-directory contains
the following:

1. A file with c-code to perform a matrix multiply
2. An ARM processor configuration file
3. A simple script to run your program on the ARM configuration with SimpleScalar

Note, that you do not need to run any SimpleScalar simulations for this lab. However, I am including
the configuration file and script that I used if you wish to (i) obtain any additional data points to help you
answer the questions below (probably not necessary) or (ii) complete the extra credit question (this is
required for the extra credit).

2.2 Questions:

Question 2.A
Trace through the code for the alternative matrix multiply (see blocking.c). What is this code doing
differently than the more traditional “non-blocking” code (no_blocking.c)?

Question 2.B
In the tables below, I have summarized relevant SimpleScalar simulation data for 50x50, 150x150, and
1000x1000 matrix multiplies. Different cache sizes and different blocking factors (the variable B in the
blocking.c file) are assumed. (Note that for typical scientific computing type problems – e.g. weather
forecasting – (i) 1000x1000 matrices are small and (ii) the 1000x1000 architectural level simulations
required approximately 1.5-2 days of compute time!)

50x50$matrices
Algorithm Sets$in$$ Bytes/set Blocks/set $$size$(bytes) CPI #$instructions Clock$period CPU$time $$miss$rate
No#Blocking 256 8 1 2048 2.1706 5476205 1.00E509 0.01189 6.38%
Blocking,#B=5 256 8 1 2048 1.472 7739338 1.00E509 0.01139 1.95%
Blocking,#B=10 256 8 1 2048 1.4166 6920798 1.00E509 0.00980 1.68%
Blocking,#B=20 256 8 1 2048 1.5756 6606164 1.00E509 0.01041 2.58%

Algorithm Sets$in$$ Bytes/set Blocks/set $$size$(bytes) CPI #$instructions Clock$period CPU$time $$miss$rate
No#Blocking 256 16 1 4096 1.952 5476205 1.00E509 0.010690 4.83%
Blocking,#B=5 256 16 1 4096 1.3339 7739338 1.00E509 0.010324 1.13%
Blocking,#B=10 256 16 1 4096 1.2444 6920798 1.00E509 0.008612 0.59%
Blocking,#B=20 256 16 1 4096 1.2912 6606164 1.00E509 0.008530 0.93%

Algorithm Sets$in$$ Bytes/set Blocks/set $$size$(bytes) CPI #$instructions Clock$period CPU$time $$miss$rate
No#Blocking 256 32 1 8192 1.7581 5476205 1.00E509 0.009628 3.49%
Blocking,#B=5 256 32 1 8192 1.2767 7739338 1.00E509 0.009881 0.74%
Blocking,#B=10 256 32 1 8192 1.2444 6920798 1.00E509 0.008612 0.59%
Blocking,#B=20 256 32 1 8192 1.2451 6606164 1.00E509 0.008225 0.60%

Algorithm Sets$in$$ Bytes/set Blocks/set $$size$(bytes) CPI #$instructions Clock$period CPU$time $$miss$rate
No#Blocking 256 64 1 16384 1.2195 5476205 1.00E509 0.006678 0.51%
Blocking,#B=5 256 64 1 16384 1.2258 7739338 1.00E509 0.009487 0.40%
Blocking,#B=10 256 64 1 16384 1.2172 6920798 1.00E509 0.008424 0.37%
Blocking,#B=20 256 64 1 16384 1.2198 6606164 1.00E509 0.008058 0.39%

Algorithm Sets$in$$ Bytes/set Blocks/set $$size$(bytes) CPI #$instructions Clock$period CPU$time $$miss$rate
No#Blocking 256 128 1 32768 1.1291 5476205 1.00E509 0.006183 0.03%
Blocking,#B=5 256 128 1 32768 1.1367 7739338 1.00E509 0.008797 0.02%
Blocking,#B=10 256 128 1 32768 1.1351 6920798 1.00E509 0.007856 0.02%
Blocking,#B=20 256 128 1 32768 1.1347 6606164 1.00E509 0.007496 0.02%

150x150%matrices
Algorithm Sets%in%$ Bytes/set Blocks/set $%size%(bytes) CPI #%instructions Clock%period CPU%time $%miss%rate
No#Blocking 256 8 1 2048 2.4874 150417309 1.00E709 0.374148 8.65%
Blocking,#B=5 256 8 1 2048 1.4875 214237398 1.00E709 0.31868 2.12%
Blocking,#B=10 256 8 1 2048 1.3935 191480928 1.00E709 0.26683 1.60%
Blocking,#B=20 256 8 1 2048 1.4812 181279044 1.00E709 0.26851 2.14%

Algorithm Sets%in%$ Bytes/set Blocks/set $%size%(bytes) CPI #%instructions Clock%period CPU%time $%miss%rate
No#Blocking 256 16 1 4096 1.9273 150417309 1.00E709 0.289899 4.96%
Blocking,#B=5 256 16 1 4096 1.3606 214237398 1.00E709 0.291491 1.34%
Blocking,#B=10 256 16 1 4096 1.2853 191480928 1.00E709 0.246110 0.94%
Blocking,#B=20 256 16 1 4096 1.2813 181279044 1.00E709 0.232273 0.93%

Algorithm Sets%in%$ Bytes/set Blocks/set $%size%(bytes) CPI #%instructions Clock%period CPU%time $%miss%rate
No#Blocking 256 32 1 8192 2.0758 150417309 1.00E709 0.312236 5.50%
Blocking,#B=5 256 32 1 8192 1.3202 214237398 1.00E709 0.282836 1.03%
Blocking,#B=10 256 32 1 8192 1.2482 191480928 1.00E709 0.239006 0.67%
Blocking,#B=20 256 32 1 8192 1.2348 181279044 1.00E709 0.223843 0.60%

Algorithm Sets%in%$ Bytes/set Blocks/set $%size%(bytes) CPI #%instructions Clock%period CPU%time $%miss%rate
No#Blocking 256 64 1 16384 1.7749 150417309 1.00E709 0.266976 3.39%
Blocking,#B=5 256 64 1 16384 1.2765 214237398 1.00E709 0.273474 0.71%
Blocking,#B=10 256 64 1 16384 1.2204 191480928 1.00E709 0.233683 0.46%
Blocking,#B=20 256 64 1 16384 1.2084 181279044 1.00E709 0.219058 0.41%

Algorithm Sets%in%$ Bytes/set Blocks/set $%size%(bytes) CPI #%instructions Clock%period CPU%time $%miss%rate
No#Blocking 256 128 1 32768 1.3281 150417309 1.00E709 0.199769 0.90%
Blocking,#B=5 256 128 1 32768 1.2791 214237398 1.00E709 0.274031 0.59%
Blocking,#B=10 256 128 1 32768 1.2234 191480928 1.00E709 0.234258 0.38%
Blocking,#B#=#20 256 128 1 32768 1.2348 181279044 1.00E709 0.223843 0.60%

1000x1000$matrices
Algorithm Sets$in$$ Bytes/set Blocks/set $$size$(bytes) CPI #$instructions Clock$period CPU$time $$miss$rate
No#Blocking 16 32 32 16384 2.7982 58126096440 1.00E709 162.648443 10.24%
Blocking,#B#=#20 16 32 32 16384 1.4875 68253137391 1.00E709 101.52654 0.12%

Given the provided data:

• Explain how blocking can positively and negatively impact performance.
• Explain when you should consider using the blocking technique.

o Selectively quantify performance gains/losses to help support your answer.

Question 2.C (Extra credit – not required)
Consider other configurations (cache size and associativity, blocking factors, matrix sizes, etc.) other
than those provided in the tables above might impact CPU time. Your response to this question must
be organized as follows:

1. Explain why you chose a particular configuration.
2. Explain how you expect CPU time to be affected – and why you expect it to change in a certain

way. (You should aim for additional performance improvement.)
3. Use SimpleScalar simulations to quantify CPU time.
4. Revisit your predictions and discuss the outcomes. Did they hold? Or did you see different

results? Why do you think this is the case?

Remember, to compile the matrix multiply (or any) C-code so that we can study it within the
SimpleScalar environment, you can simply type:

 > arm-gcc blocking.c –o blocking -static

To run this program in the SimpleScalar environment (i.e. to see how efficiently the StrongARM
configuration can perform this matrix multiply), you can simply use the script provided OR type:

 > sim-outorder –config <configuration file name>.cfg <cross-compiled executable name>

Finally, remember that 1000x1000 matrix multiply simulations can take 1-2 days to run. 150x150 or
50x50 matrix multiplies generally take just a few minutes.

3. A Real Life Example:
The focus of my research is on computational devices beyond the transistor – which may ultimately be
limited by physics, cost, and manufacturing-related issues. My research efforts have primarily targeted
computational systems where magnetic elements with nanometer feature sizes are used to both
process and store binary information.
Why is this good? In conventional electronics, most computation is charge-based. A power supply
maintains state, and thousands of electrons (each dissipating ~1.66x10-19 J of energy) are needed to
perform a single function (when you consider a chip with a billions transistors on it, this adds up
quickly!). Alternatively, nanomagnet logic (NML) devices can process information in a cellular-automata
like architecture, could dissipate less than 1.66x10-19 J per switching event for a gate operation, will
retain state without power, and are intrinsically radiation hard.
Thus, looking up to applications, NML has the potential to mitigate increasing chip-level power densities
that are currently exacerbated by device scaling, could help to improve battery life in mobile information
processing systems, and may operate in environments where transistor-based logic and memory
cannot.
To design and study magnetic logic systems, both my graduate students and I do lots and lots of
physical-level simulations. In particular, we use a simulation suite called “OOMMF” – or the “Objected
Oriented MicroMagnetic Framework”. OOMMF simulations give us an idea of how an ensemble of
magnets (which forms a magnetic logic gate or circuit) might perform when “clocked” after being
subjected to new inputs. These simulations are critical for experimental design (there is excellent
correlation between simulation results and experimental results), as well as for projecting how well NML
might ultimately perform and scale.
The current version of OOMMF used by our group is multi-threaded, and the user can specify the
number of threads that a given simulation will use – i.e. 8 cores could be used to simulate 1 magnetic

ensemble, or 8 cores could be used to simulate 8 different magnet ensembles simultaneously. As you
might expect, presumably the single threaded simulations would have longer execution times.
While the correlation between simulation and experimental results is strong, one drawback to this
simulation-based approach to design is that the simulations themselves can be quite time consuming
(i.e. 2-3 days are sometimes needed to see how just a 10-15 magnet ensemble will respond to just 1
input). Moreover, because of the rather complex magnetization dynamics, any changes to the material
system being studied, magnet geometries, etc. necessitate an entirely new simulation.
At present, there are 7 graduate students in my research group. Four students (+ two faculty members)
do micromagnetic simulations. Thus, it is not uncommon for the group to have between 300-500
simulations running simultaneously.
Not surprisingly, we need significant computational resources to manage this simulation overhead. We
currently use machines managed by Notre Dame’s Center for Research Computing (CRC). While
access to these machines is good, there are times when our jobs will wait for 24-48 hours in a queue
(as other research groups also have access to these resources).
There are times when we would like to have instantaneous access to computing resources (e.g. to
meet a paper or proposal deadline, support experimental work, etc. As such, as part of a recent
proposal to the Department of Defense to investigate magnetic logic systems, we included a line item in
our budget that would allow for the purchase of compute nodes that are managed by the CRC, but
where our research group would receive priority scheduling on said nodes1.
We considered two compute server configurations that were available for purchase:

1. A server with 2, AMD 6134 chips (8 cores/chip @ 2.3GHz) and 24GB DDR3 RAM at $1,746.37
2. A server with 2, Intel E5620 chips (4 cores/chip @ 2.4GHz) and 24GB DDR3 RAM at $1,848.83

Given only a cursory glance, the choice of server would be somewhat obvious:

o The server with an AMD chipset offers 2X more cores that the server with an Intel chipset
o The server with an AMD chipset has a marginally lower clock rate than the server with an Intel

chipset
o The server with an AMD chipset has the same amount and type of memory as the server with

an Intel chipset

However, after consulting with CRC personnel, we learned that code used by certain research groups
can perform significantly better on the Intel serves (even given the reduced number of cores). To
determine which compute server best meets our needs, the CRC recommended running a set of
representative simulations on different servers – where different compilers were also used to compile
the simulation engine.

The results of the test simulations are summarized in the table below. Note that in all cases, jobs were
submitted to maximize CPU usage. Thus, for the 4-core chip Intel server (with two chips), 8 single core
jobs were submitted simultaneously. Similarly, for the 8-core chip AMD server (with two chips), 16
single core jobs were submitted simultaneously. (This was done to ensure that there was not an
imbalance regarding main memory usage.)

1 i.e. if we are not running jobs, other users’ jobs can run on these nodes; however, if we submit jobs, our jobs will
be scheduled and the jobs running on our nodes will be returned to the queue.

 Server Type Intel - 8 Total Cores AMD - 16 Total Cores
 # Cores used per job 1 4 1 4

g++
Compiler

Average time per job
(Hours:Minutes:Seconds) 3:45:53 1:21:55 4:41:00 2:06:51

Time to complete 16
identical jobs on each

server
(Hours:Minutes:Seconds) 7:31:45 10:55:20 4:41:00 8:27:25

Intel
Compiler

(icpc)

Average time per job
(Hours:Minutes:Seconds) 3:47:00 1:18:30 4:34:38 1:51:30

Time to complete 16
identical jobs on each

server
(Hours:Minutes:Seconds) 7:34:00 10:28:00 4:34:38 7:26:00

PGI
Compiler
(pgCC)

Average time per job
(Hours:Minutes:Seconds) 6:44:37 1:44:00 5:40:45 2:31:15

Time to complete 16
identical jobs on each

server
(Hours:Minutes:Seconds) 13:29:15 13:52:00 5:40:45 10:05:00

open64
Compiler
(openCC)

Average time per job
(Hours:Minutes:Seconds) 3:50:23 1:22:00 5:10:37 2:01:15

Time to complete 16
identical jobs on each

server
(Hours:Minutes:Seconds) 7:40:45 10:56:00 5:10:37 8:05:00

Given our typical usage patterns, a $25,000 budget, and the statistics summarized in the above table
answer the questions below. You should justify your answer quantitatively:

- What servers (chipset + number of servers) would you recommend buying and why?
- Does the choice of compiler have a significant impact on your results?

4. Parallel Mergesort:
A challenge of multi-core computing is figuring out how to best make use of the multiple processors
cores. It is not enough to simply split a program into N equal chunks for N processors. The separate
sub-problems solved by each CPU core usually must communicate with each other to coordinate their
work and produce the final solution. Though the product of the number of cores, and the computational
power per core, may be much greater for a multicore than a single core of the same size, this inter-core
communication is often very costly and can affect the design of the algorithms involved.

We will look at a very simple application of a multicore microprocessor, to solve a sorting problem with
a modified mergesort algorithm. Essentially, this parallel mergesort will (1) split the input into equally-
sized chunks for each core, and then (2) after each core sorts its partial list, these lists will be combined
(merged) into the final answer.

Roughly, parallel mergesort looks like this:

Parallel_Mergesort(S)
{
 S1, S2, ..., Sn = Partition(S, number_of_cores)

 for i = 1 to n:
 Dispatch_Core(i, Si)

 Wait_for_Cores_to_Finish()

 Sorted_S1, Sorted_S2, ..., Sorted_Sn = Receive_From_Cores()

 return merge(Sorted_S1, Sorted_S2, ..., Sorted_Sn)
}

Core_Mergesort(sublist)
{
 if (length(sublist == 1)) : return sublist

 S1, S2 = Split(sublist)

 S1 = Core_Mergesort(S1)
 S2 = Core_Mergesort(S2)

 return Merge(S1, S2)
}

(Note that Core_Mergesort is essentially the same function that you wrote in Lab 02 – and that code
would be part of a multi-core implementation.)

For simplicity, presume the multi-core machines can do everything in parallel until the final merge step.
All of the CPUs have the exact same instruction set and have the same rate of execution for each core,
and the clock rates for all machines/cores are equal. However, the time to transfer the sorted sublists
back to the master routine, etc. is given in clock cycles per list element – and does depend on the
number of cores.

This code will run on an 8-core chip in 1 of 4 possible modes:

- Mode 1:
o 1 core used.

- Mode 2:
o 2 cores used.
o Time to message between CPUs: 60 CCs per element must be accounted for

- Mode 3:
o 4 cores used.
o Time to message between CPUs: 100 CCs per element must be accounted for

- Mode 4:
o 8 cores used.
o Time to message between CPUs: 140 CCs per element must be accounted for

You should assume that on each core:

- the Split(L) function takes 2 CC per element in L
- the Merge(L1, L2) function takes 15 CC per element in L1 or L2.

Thus, there are N splits and N elements merged per core.

Finally, recall that the depth of recursion for a mergesort will be logarithmic (base 2) – specifically, for a
power-of-two input size 2N, there will be N+1 levels of recursion in Core_Mergesort (since the
recursion bottoms out at N = 0, not 1.

The above information is all that you need to estimate run times.

Assume that you want to sort an N element list – where N is a power of 2, is greater than or equal to 8,
and less than or equal to 4,194,304 (i.e. 4 megs). For what sized lists are Modes 1-4 most efficient?
What do these results suggest if you're writing / compiling code that can be parallelized?

(Hint: write an expression for run time and graph it.)

5. What to turn in:
A typed lab report that contains answers to the questions in Sections 2-4.

