
Lectures 02, 03  
Introduction to Stored Programs"

Suggested reading:"
HP Chapters 1.1-1.3"

1"

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

Some slides/images from Vahid text – hence this notice:"

2"

Processor components"

vs."

Processor comparison"

University of Notre Dame!

CSE 30321 - Lecture 01 - Introduction to CSE 30321! 44!

vs.!

for i=0; i<5; i++ {!

!a = (a*b) + c;!

}!

MULT r1,r2,r3 ! # r1 ! r2*r3!

ADD r2,r1,r4 ! # r2 ! r1+r4!

110011! 000001! 000010! 000011!

001110! 000010! 000001! 000100!

or!

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"

Fundamental lesson(s)"
•  How code you write (compiled C for example) is

ultimately run on HW."

3"

Why it’s important…"
•  You'll learn what your microprocessor actually does

when you compile and execute code written in a HLL."

•  Equally important, at the heart of this discussion is the
"stored program model”."
–  This is a fundamental idea that we'll discuss over the

entire semester … and many things build off of it. "

4"

Board Discussion #1: 
Introduction to stored programs"

5"

A"

6"

Board discussion summary:"
•  Stored program model has been around for a long time..."

Program memory"

Data Memory"

Program
counter"
(index)"

Processing Logic"

Board discussion summary:"

7"

for i=0; i<5; i++ {!
!a = (a*b) + c;!

}!

A hypothetical translation:"

MULT temp,a,b" # temp a*b"
MULT r1,r2,r3 " # r1 r2*r3"

ADD a,temp,c " # a temp+c"
ADD r2,r1,r4 " # r2 r1+r4"

Can define codes for MULT and ADD"
Assume MULT = 110011 & ADD = 001110"

stored
program
becomes"

PC" 110011" 000001" 000010" 000011"

PC+1" 001110" 000010" 000001" 000100"

A simple “Von Neumann” architecture"
•  “Von Neumann architecture” synonymous

with “programmable processor”"
"
•  Processing generally consists of:"

–  Loading some data"
–  Transforming that data"
–  Storing that data"

"
•  Datapath: core of a programmable processor"

–  Can read/write data memory"
–  Has register file to hold subsets of memory "

•  (in a local, fast memory)"
–  Has ALU to transform local data"

8"

D"a"ta memo"r"y D"

n-bit"
2x"1"

R"e"g"is"t"er file RF"

A"L"U"

Datapath"

Connected to
other, peripheral

HW"

Basic datapath operations"
•  Load: load data from data memory to RF"
•  ALU operation: transforms data by passing one or two RF values

through ALU (for ADD, SUB, AND, OR, etc.); data written back to RF"
•  Store operation: stores RF register value back into data memory"
•  Each operation can be done in one clock cycle"

9"

Register file RF

Data memory D

ALU

n-bit
2x 1

Register file RF

Data memory D

ALU

n-bit
2x 1

Register file RF

Data memory D

ALU

n-bit
2x 1

Load operation" ALU operation" Store operation" B"

10"

The datapath control unit"
•  D[9] = D[0] + D[1] – requires a

sequence of four datapath
operations:"

0: RF[0] = D[0]"
1: RF[1] = D[1]"
2: RF[2] = RF[0] + RF[1]"
3: D[9] = RF[2] "

•  Each operation is an instruction "
–  Sequence of instructions – program!
–  Programmable processors

decomposing desired computations into
processor-supported operations"

–  Store program in instruction memory!
!
–  Control unit reads each instruction and

executes it on the datapath "
•  PC: Program counter – address of

current instruction"
•  IR: Instruction register – current

instruction "

Register file RF

Data memory D

ALU

n-bit
2 x 1

Datapath

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

I

Control unit

Instruction memory

PC IR

Controller

Foreshadowing:"
What if we want ALU to add, subtract?"

How do we tell it what to do?"

The datapath control unit"
•  To carry out each instruction, the control unit must:"

–  Fetch – Read instruction from instruction memory"
–  Decode – Determine the operation and operands of the instruction"
–  Execute – Carry out the instruction's operation using the datapath"

11"

RF[0]=D[0] 0 -> 1

R[0]: ?? 99
"load"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)
Fetch"

RF[0]=D[0]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

1

(b)

Controller

Decode"

Register file RF

Data memory D
D[0]: 99

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

RF[0]=D[0] 1

(c) Execute"

12"

The datapath control unit"

RF[1]=D[1} 1 -> 2

R[1]: ?? 102
"load"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)
Fetch

RF[1]=D[1]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

2

(b)

Controller

Decode

Register file RF

Data memory D
D[1]: 102

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

RF[1]=D[1] 2

(c) Execute

•  To carry out each instruction, the control unit must:"
–  Fetch – Read instruction from instruction memory"
–  Decode – Determine the operation and operands of the instruction"
–  Execute – Carry out the instruction's operation using the datapath"

•  Instruction Set – List of allowable instructions and their
representation in memory, e.g.,"
–  Load instruction—0000 r3r2r1r0 d7d6d5d4d3d2d1d0	

–  Store instruction—0001 r3r2r1r0 d7d6d5d4d3d2d1d0	

–  Add instruction— 0010 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0	

13"

Datapath + control ="

Instruction memory I
0: 0000 0000 00000000
1: 0000 0001 00000001
2: 0010 0010 0000 0001
3: 0001 0010 00001001

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

Desired program

operands"

Instructions in 0s and 1s
– machine code!

opcode"

“Instruction” is an idea that "
helps abstract 1s, 0s, but "

still provides info. about HW"

What does this tell you "
about data memory?"

What does this tell us about"
the register file?"

3-instruction"
programmable processor"

Toward a more detailed, realistic datapath…"
•  To design the processor, we can begin with a high-level

state machine description of the processor's behavior"
–  Control unit manages instruction fetch, flow through

datapath HW"

14"

Decode

Fetch
Init

PC=0
IR=I[PC]
PC=PC+1

Load
RF[ra]=D[d]

op=0000

Store Add
RF[ra] =
 RF[rb]+ RF[rc]

D[d]=RF[ra]

op=0001 op=0010

Toward a more detailed, realistic datapath…"
•  Now, create detailed connections among components"

15"

Fetch

Decode

Init
PC=0

Store

IR=I[PC]
PC=PC+1

Load Add
RF[ra] =
 RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

Datapath

D D_addr 8
D_rd
D_wr

addr
rd
wr 256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0
16

16

16
16 16

16

RF_s s 1

A B
alu_s0

s0 ALU

RF_W_wr
RF_Rp_addr
RF_Rq_addr
RF_Rq_rd
RF_Rp_rd

RF_W_addr 4
4
4

PC
clr up

16
I R

Id

16

16

I data rd addr

Controller

Control unit

Register file RF

Data memory D

ALU

n-bit
2x 1

Before"

Toward a more detailed, realistic datapath…"
•  Convert high-level state machine description of entire

processor to FSM description of controller"
–  Use datapath and other components to achieve same

behavior"

16"

Fetch

Decode

Init

PC=0

Store

IR=I[PC]

PC=PC+1

Load Add

RF[ra] =

 RF[rb]+

 RF[rc]

D[d]=RF[ra]RF[ra]=D[d]

op=0000 op=0001 op=0010

PC
clr up
16

I R
Id

16

16

I data rd addr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr
RF_Rq_addr
RF_Rq_rd
RF_Rp_rd

RF_W_addr

D_addr 8
D_rd
D_wr

RF_s

alu_s0

addr D
rd
wr 256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0
16

16

16
16 16

16

s 1

A B s0 ALU

4
4
4

Fetch

Decode

Init
PC=0

PC_ clr=1

Store

I R= I [PC] PC=PC+1
I _rd=1 PC_inc=1
I R_ld=1

Load Add
RF[ra] = RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

D_addr=d
D_wr=1
RF_s=X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s=0
RF_Rq_addr=rc
RF_Rq _rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s0=1

D_addr=d
D_rd=1
RF_s=1
RF_W_addr=ra
RF_W_wr=1

C"

17"

Q1: D[8] = D[8] + RF[1] + RF[4]"
 …"
" "I[15]: Add R2, R1, R4 RF[1] = 4"
" "I[16]: MOV R3, 8 RF[4] = 5"
" "I[17]: Add R2, R2, R3 D[8] = 7"

 …"
"
"
"

(n+1)
Fetch
PC=15
IR=xxxx

(n+2)
Decode
PC=16
IR=2214h

(n+3)
Execute
PC=16
IR=2214h
RF[2]=
 xxxxh

(n+4)
Fetch
PC=16
IR=2214h
RF[2]=
 0009h

(n+5)
Decode
PC=17
IR=0308h

(n+6)
Execute
PC=17
IR=0308h
RF[3]=
 xxxxh

CLK

(n+7)
Fetch
PC=17
IR=0308h
RF[3]=
 0007h

Be sure you understand the timing!"

Assembly code (for 3-instruction processor)"
•  Machine code (0s and 1s) hard to work with"
•  Assembly code – uses mnemonics "

–  Load instruction—MOV Ra, d"
•  specifies the operation RF[a]=D[d]."

–  a is # between 0 and 15"
–  R0 means RF[0], R1 means RF[1], etc."
–  d is # between 0 and 255"

–  • Store instruction—MOV d, Ra"
•  specifies the operation D[d]=RF[a]"

–  • Add instruction—ADD Ra, Rb, Rc"
•  specifies the operation RF[a]=RF[b]+RF[c]"

18"

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

Desired program 0: 0000 0000 00000000
1: 0000 0001 00000001
2: 0010 0010 0000 0001
3: 0001 0010 00001001

machine code"

0: MOV R0, 0"
1: MOV R1, 1"
2: ADD R2, R0, R1"
3: MOV 9, R2"

assembly code"

Important: understand the timing!"

19"

•  Will the correct instruction be fetched if PC is incremented during
the fetch cycle?"
–  No, since PC will not be updated until the beginning of the next

cycle"

•  While executing “MOV R1, 3”, what is the content of PC and IR
at the end of the 1st cycle, 2nd cycle, 3rd cycle, etc.? (assume
we’re at start of program)"
–  1st cycle: PC = 0, IR = xxxx"
–  2nd cycle: PC = 1, IR = I[0]"
–  3rd cycle: PC = 1, IR = I[0]"

•  What if it takes more than 1 cycle for memory read?"
–  Cannot decode until IR is loaded"

D"

20"

A 6-Instruction programmable processor"
•  Let's add three more (useful) instructions:"

–  Load-constant instruction—0011 r3r2r1r0 c7c6c5c4c3c2c1c0"
•  MOV Ra, #c—specifies the operation RF[a]=c"

–  Subtract instruction—0100 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0"
•  SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] – RF[c]"

–  Jump-if-zero instruction—0101 ra3ra2ra1ra0 o7o6o5o4o3o2o1o0"
•  JMPZ Ra, offset—specifies the operation PC = PC + offset if RF[a]

is 0"

21

Example program"
Compare the contents of D[4] and D[5]. "
If equal, D[3] =1, otherwise set D[3]=0."
"
" " " ""
" "MOV R0, #1 "# RF[0] = 1"

 " "MOV R1, 4 " # RF[1] = D[4]"
" "MOV R2, 5 " # RF[2] = D[5]" "
" "SUB R3, R1, R2 "# RF[3] = RF[1]-RF[2]"
" "JMPZ R3, B1 "# if RF[3] = 0, jump to B1"
" "SUB R0, R0, R0 "# RF[0] = 0"

B1: "MOV 3, R0 "# D[3] "= RF[0]"

Program for the 6-Instruction processor"
•  Example program:"

–  Count number of non-zero words in D[4] and D[5]"
–  Result will be either 0, 1, or 2"
–  Put result in D[9]"

22"E"

23"

Modifications to 3-instruction processor"

•  Load-constant instruction"
"0011 r3r2r1r0c7c6c5c4c3c2c1c0"

!
•  Subtract instruction"
 "0100 ra3ra2ra1ra0

rb3rb2rb1rb0 rc3rc2rc1rc0"

•  Jump-if-zero instruction"
 "0101 ra3ra2ra1ra0

o7o6o5o4o3o2o1o0"

PC
clr up
16

I R
Id

16

16

I data rd addr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr
RF_Rq_addr
RF_Rq_rd
RF_Rp_rd

RF_W_addr

D_addr 8
D_rd
D_wr

RF_s

alu_s0

addr D
rd
wr 256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0
16

16

16
16 16

16

s 1

A B s0 ALU

4
4
4

Adding instructions can also mean adding hardware"

24

Extending the control unit and datapath"

I

Datapath

RF_Rp_addr
RF_Rq_addr

RF_Rp_zero

RF_W_addr

D_addr
D_rd
D_wr

RF_s1
RF_W_data

RF_s0

alu_s1
alu_s0

addr D
rd
wr 256 x 16

16 x 16
RF

16-bit
3 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0
16

16

16
16 16

16

s1
s0

1 2

A B s1
s0 ALU

4
4
4

=0
3a

1
8

8

1
PC

clr ld up
16

I R
Id

16 data rd addr

Controller

Control unit

a+b-1

16
*

*

+
3b IR[7..0]

2
s1
0
0
1

s0
0
1
0

ALU operation
pass A through
A+B
A-B

F"

25

Controller FSM for 6-instruction processor"

Fetch

Decode

Init
PC_clr=1

Store

I _rd=1
PC_inc=1
I R_ld=1

Load Add
D_addr=d
D_wr=1
RF_s1 = X
RF_s0 = X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1 = 0
RF_s0 = 0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr_ra
RF_W_wr=1
alu_s1 = 0
alu_s0 = 1

D_addr=d
D_rd=1
RF_s1 = 0
R F _ s0 = 1
RF_W_addr=ra
RF_W_wr=1

Subtract Load-
constant Jump-if-zero

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

RF_Rp_addr=ra
RF_Rp_rd=1 RF_s1=1

RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Jump-if-
zero-jmp
PC_ld=1

op=0100 op=0101 op=0010 op=0011 op=0001 op=0000

R
F_

R
p_

ze
ro

R
F_

R
p_

ze
ro

'

HOW “REALISTIC” IS WHAT WE
JUST DISCUSSED?"

26"

ARM7TDMI is real, commodity processor"

27"

http://www.st.com/stonline/products/families/evaluation_boards/
industrial/factory_automation/motion_control/steval-ifn002v1/img/
image_steval-ifn002v1.jpg"

Introduction

1-2 Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C

1.1 About the ARM7TDMI core

The ARM7TDMI core is a member of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption, and small size.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The RISC instruction set and related decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:
• a high instruction throughput
• an excellent real-time interrupt response
• a small, cost-effective, processor macrocell.

This section describes:
• The instruction pipeline
• Memory access on page 1-3
• Memory interface on page 1-3.
• EmbeddedICE-RT logic on page 1-3.

1.1.1 The instruction pipeline

The ARM7TDMI core uses a pipeline to increase the speed of the flow of instructions
to the processor. This enables several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:
• Fetch
• Decode
• Execute.

The instruction pipeline is shown in Figure 1-1.

Figure 1-1 Instruction pipeline

Fetch

Decode

Execute

Instruction fetched from memory

Decoding of registers used in
instruction

Register(s) read from register bank
Shift and ALU operation
Write register(s) back to register bank

So
ur

ce
:

AR
M

7T
D

M
I T

ec
hn

ic
al

 R
ef

er
en

ce
 M

an
ua

l"

University of Notre Dame!

CSE 30321 - Lecture 02-03 – Stored Programs! 10

Basic Architecture – Control Unit!
•! To carry out each instruction, the control unit must:!

–! Fetch – Read instruction from inst. mem.!

–! Decode – Determine the operation and operands of the instruction!

–! Execute – Carry out the instruction's operation using the datapath!

RF[1]=D[1} 1 -> 2

R[1]: ?? ! 102

"load"

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

(a)

Fetch

RF[1]=D[1]

Instruction memory I

Control unit

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

2

(b)

Controller

Decode

Register file RF

Data memory D
D[1]: 102

ALU

n-bit
2 x 1

Datapath

Instruction memory I

Control unit

Controller

PC I R

0: RF[0]=D[0]
1: RF[1]=D[1]
2: RF[2]=RF[0]+RF[1]
3: D[9]=RF[2]

RF[1]=D[1]
2

(c)
Execute

Very similar to
instruction
execution stages
just discussed !

ARM7TDMI is real, commodity processor"

28"

Introduction

ARM7TDMI Data Sheet
ARM DDI 0029E

1-5

O
p

e
n

 A
c
c
e
s
s

1.4 ARM7TDMI Core Diagram

 Figure 1-2: ARM7TDMI core

nRESET

nMREQ

SEQ

ABORT

nIRQ
nFIQ

nRW

LOCK
nCPI
CPA
CPB

nWAIT
MCLK

nOPC

nTRANS

Instruction
Decoder

&
Control
Logic

Instruction Pipeline
& Read Data Register

DBE D[31:0]

32-bit ALU

Barrel
Shifter

Address
Incrementer

Address Register

Register Bank
(31 x 32-bit registers)

(6 status registers)

A[31:0]

ALE

Multiplier

ABE

Write Data Register

nM[4:0]

32 x 8

nENOUT nENIN

TBE

Scan
Control

BREAKPTI

DBGRQI

nEXEC

DBGACK

ECLK

ISYNC

B

b
u
s

A
L
U

b
u
s

A

b
u
s

P
C

b
u
s

I
n
c
r
e
m
e
n
t
e
r

b
u
s

APE
BL[3:0]

MAS[1:0]

TBIT
HIGHZ

& Thumb Instruction Decoder

University of Notre Dame!

CSE 30321 - Lecture 02-03 – Stored Programs! 15

Control unit and datapath for 3-

instruction processor!
•! Convert high-level state machine

description of entire processor to
FSM description of controller that
uses datapath and other
components to achieve same
behavior!

Fetch

Decode

Init

PC=0

Store

IR=I[PC]

PC=PC+1

Load Add

RF[ra] =

 RF[rb]+

 RF[rc]

D[d]=RF[ra]RF[ra]=D[d]

op=0000 op=0001 op=0010

PC
clr up

16
I R

Id

16

16

I data rd addr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr

RF_Rq_addr
RF_Rq_rd

RF_Rp_rd

RF_W_addr

D_addr 8

D_rd
D_wr

RF_s

alu_s0

addr D
rd
wr

256 x 16

16 x 16
RF

16-bit
2 x 1

W_data R_data

Rp_data Rq_data

W_data
W_addr
W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0

16

16

16

16 16

16

s
1

A B
s0 ALU

4

4

4

Fetch

Decode

Init

PC=0
PC_ clr=1

Store

I R= I [PC] PC=PC+1
I _rd=1 PC_inc=1
I R_ld=1

Load Add

RF[ra] = RF[rb]+
 RF[rc]

D[d]=RF[ra] RF[ra]=D[d]

op=0000 op=0001 op=0010

D_addr=d
D_wr=1
RF_s=X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s=0
RF_Rq_addr=rc
RF_Rq _rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s0=1

D_addr=d
D_rd=1
RF_s=1
RF_W_addr=ra
RF_W_wr=1

Very similar to instruction execution stages just discussed !

Where is it used?"

29"

Over 10 billion units shipped.!
http://www.arm.com/products/processors/classic/arm7/arm7tdmi.php"

B&N Nook E-Reader!

Triworks BEAUTY
RF PLUS mod.

BRF1!

Microsoft Xbox 360 Wireless
Steering Wheel!

Ugobe Pleo
Dinosaur!

Fuji xerox DocuPrint
C2090FS Colour Printer!

Nokia 500 Navigation!

ExaDigm
XD2100SP Mobile
Payment system!

Board Discussion #5: 
Wrap up, final examples"

30"

G"

