
CSE 30321 – Lecture 02-03 – In Class Example Handout 
 
Part A:   Discussion – Overview of Stored Programs       
 
Let’s walk through what happens so that code you write is eventually executed on-chip. 

- We’ll use a stored program model as context. 
 
After you write code, you compile it – i.e. translate it into a sequence of operations that computer HW can 
understand 

- Notes: 
o You can compile the same C-program on different processor architectures (i.e. Intel vs. AMD) 

and it will work 
o Usually, a layer of compiler different depending on machine target 

 
By compiling, might take a statement of C-code like… 

 
 x = a * b + c / d * e + f;  

 
…and translate it to a somewhat simpler set of “commands”: 
 

  t1 = a * b    t4 = t1 + t3 
    t2 = c / d    t5 = t4 + f 
    t3 = t2 * e 
 
Simpler commands/operations eventually lead to instructions 

- Instructions represent something the processor HW can actually do. 
o Example: 

 Common DSP function is a multiply-accumulate operation:  x  x + (y*z) 
 Some DSP processors have HW that can do this directly 
 Others may require two separate steps: 

• temp = y * z 
• x = x + temp 
• (thus, there would not be a multiply-accumulate instruction) 

- Instructions inherently suggest a sequence of 1s and 0s that the processor can understand 
 
Common instruction syntax looks something like this: 
  t4 = t1 + t3 = Add t4, t1, t3  # t4  t1 + t3 
  t3 = t2 * e = Mult t3, t2, e  # t3  t2 * e 
 
The tX variables used in the above example are really just random placeholders 

- Above code does the exact same thing if:  t3 = moon_unit and t2 = dweezle 
 
In HW, commonly used data often resides physically in registers; registers are close to processing logic and 
can be accessed quickly. 

- Registers are essentially sequences of N flip-flops (refer back to your logic design course) 
- Usually, processor has a finite number, so it’s important that a compiler uses them smartly 

o So, an instruction like Add t4, t1, t3 might instead be written as: 
 Add R4, R1, R3 
 Add $4, $1, $3  # $ is a commonly used symbol for register 
 (Instruction tells you that the compiler has assigned certain variables of your program to 

registers 1, 3, and 4) 
 
 

Short digression: 
Compilation usually = 
multiple passes.  Why? 



 
Looking back at our initial example, the instructions that comprise this statement might be as follows: 
 

t1 = a * b Mult R10, R11, R12 R10 = t1;   R11 = a;   R12 = b 
t2 = c / d Div R13, R14, R15 R13 = t2;   R14 = c;   R15 = d 
t3 = t2 * e Mult R16, R13, R17 R16 = t3;   R17 = e;   use R13 data 
t4 = t1 + t3 Add R18, R10, R16 R18 = t4;   use R10, R16 data 
t5 = t4 + f Add R19, R18, R20 R19 = t5;   R20 = f;   use R18 data 

 
Now, let’s go 1 step further… 

- We’ll use “Add R18, R10, R16” as an example… 
o This is really just another way of representing a string of 1s and 0s that computer HW can 

understand 
 Might be: 00101  10010  01010  10000 

o When processor HW is presented with sequence of 1s and 0s it knows to interpret certain parts 
of the bit sequence in certain ways … i.e.: 

 Last 5 bits are the name/location of one “source operand” (i.e. 100002 = 1610) 
 2nd to last 5 bits are the name of another source operand (i.e. 010102 = 1010) 
 Another sequence of 5 bits tells processor HW where to store results (i.e. 100102 = 1810) 
 Most significant bits might be an “operation code” 

• Usually every instruction has this field 
• Tells processor HW what to do:  i.e. 00100 = “Add” 

o If try to run binary executable on wrong architecture, get errors b/c sequences of 1s and 0s are 
misinterpreted. 

 
So, our sequence of instructions that we created above might really look like this: 

- Note that I’ve arbitrarily made up “op codes” for the multiply, add, and divide instructions 
 

Instruction mnemoic Op code Destination Source 1 Source 2 
Mult R10, R11, R12 00110 01010 01011 01100 
Div R13, R14, R15 00111 01101 01110 01111 
Mult R16, R13, R17 00110 10000 01101 10001 
Add R18, R10, R16 00101 10010 01010 10000 
Add R19, R18, R20 00101 10011 10010 10100 

 
When you compile a program, this is what you effectively produce: 

- A sequence of instructions that can be processed by your HW 
- That sequence of instructions corresponds to a sequence of 1s and 0s that the HW can interpret 

 
So to foreshadow a bit: 

- If each instruction takes the same amount of time, a compiler that produces fewer instructions is 
probably better than 1 that produces more (at least for that particular program) 

- Or, if you can do more with the same instruction (in the same amount of time), that’s a good thing too! 
 
Conclusion:  contrast to HW-based solution: 

 
 



Part B:   Discussion – What’s a Clock Cycle?        
- Recall for logic design you can store a bit of data in a flip-flop 

o In context of architecture, can think of a clock cycle as: 
 Time data in a flip flop … to be processed / move through some combinational logic (i.e. 

computation) … and to be stored again in another (or the same flip flop) 
 
 
Part C:  Setting Control Signals and Modifying the Datapath      
Setting the Control Signals 
For Load: 

- D_addr = d 
o Address sent to data memory (to read from) (“/8” = 8 bits) 

- D_rd = 1 
o Signal indicates we are doing a memory read 

- RF_s = 1 
o Take data from memory, not ALU to load / send to register file 

- RF_W_addr 
o The # of the register to load data to; again, how may registers? 

- RF_W_wr = 1 
o We are doing a register write 

 
For Store: 

- D_addr = d 
o Address sent to data memory (to write to) 

- D_wr = 1 
o Doing memory write 

- DF_s = X 
o We don’t care what is selected 

- RF_Rp_addr = Ra 
o 4 bits indicating what register data we will read from 

- RF_Rp_read = 1 
o We’re doing a read, so don’t write to register file 
o Important to note that (garbage) data could be written to data file 

 
For Add:  

- RF_RP_addr = rb (4 bit field) 
o 1 address sent to register file to read 

- RF_RP_rd = 1 
o Read from the register file 

- RF_s = 0 
o Tells which input of the multiplexor should be selected as input to the register file 

- RF_Rq_addr = rc (4 bit field) 
o 2nd address sent to the register file to read 

- RF_Rq_rd = 1 
o Read from the register file 

- RF_W_addr = ra 
o Send specific 4 bits of the IR to the register file – indicates what register will be written 

- RF_W_wr = 1 
o Set a flag indicating it is OK to write to that regsiter 

- ALU_s0 = 1 
o Tells the ALU what function to perform – e.g. add or subtract… 

 OR vs. Add example… 
 



Part D:   Datapath examples 
Question 1: 
Which are valid, single cycle operations for a given datapath?  A datapath schematic is included for your 
reference. 
 
(a) Move D[1] to RF[1] (i.e., RF[1] = D[1]) 
Yes:  this is a load. 
Data goes from Data memory  n-bit 2x1 mux  register file 
 
 
(b) Store RF[1] to D[9] and store RF[2] to D[10] 
No:  HW not available to do this. 
There is only 1 path to the data memory 
How would we do this? 
 
(c) Add D[0] plus D[1], store result in D[9] 
No:  look at where data into the ALU comes from … RF. Also, no path from ALU to data memory. 
 
Question 2: 
How many cycles does each of the following take given the above data path.  Again, a schematic is included 
for your reference. 
 
(a) Move RF[1] to RF[2].  (How is this done?) 
1st question … HOW?  (Not uncommon for there to be default 0.) 
Usually, R0 = 0.  Therefore, might do RF[2] = RF[1] + RF[0]; 3 clock cycles (CCs) 
 
(b) Add D[8] with RF[2] and store the result in RF[4]. 
Syntax:  RF[4] = D[8] + RF[2] (this is what we want to do) 
(i) Load D[8] into register – RF(3) = D[8]; (ii) do add: RF[4] = RF[1] + RF[2]; 6 CCs 
 
(c) Add D[8] with RF[1], then add the result with RF[4], and store the result in D[8]. 
Hint:  temp = RF[1] + D[8]; temp2 = temp + RF[4]; D[8] = temp 
Ans:   1. RF[x] = D[8]; 2. RF[x] = RF[1] + RF[x]; 3. RF[x] = RF[x] + RF[4]; 4. D[8] = RF[x]; 12 CCs 
 
Question 3: 
A.  Create a sequence of instructions for the following operations: 
 
D[8] = D[8] + RF[1] + RF[4] 
 
Your answer                     My answer 
1. RF[2] = RF[1] + RF[4]  3. RF[2] = RF[2] + RF[3] 
2.  RF[3] = D[8]   4. D[8] = RF[2] 
 
 
B.  Translate your answers in Question 4 into assembly code. 
 
Your answer                     My answer 
1. Add R2, R1, R4  3. Add R2, R2, R3 
2.  Mov R3, 8  4. Mov 8, R2 
- In 2:  (a) Mov could just as easily say “Load”; (b) R3 is the destination (1st) and 8 is the source address (2nd) 
- In 4:  (a) Mov could say “Store”; (b) 8 is the destination (1st) and R2 is the destination register (2nd) 
 
 



Part E:  Programs for a 6-instruction processor 
Question 1: 

 
- Problem: 

o Count number of non-zero words in D[4] and D[5] 
o Result will be either 0, 1, or 2 
o Put result in D[9] 

 
- There are 2 ways to think about doing this problem… 

o Assume “count” initially 2, go down 
o Assume “count” initially 0, go up. 

 
- Let’s assume we count down instead of up… 

 
 

 MOV R7, #2 Load register 7 with the number 2 Load constant 
 MOV R1, #1 Load register 1 with the number 1 Load constant 
 MOV R2, 4 Load the content of memory location 4 into R2 Load 
 JUMPZ R2, A If R2 is 0, jump to location A, decrement counter Jump if Rx is 0 
B MOV R2, 5 Load the content of memory location 4 into R2 Load 
 JUMPZ R2, C If R2 is 0, jump to location C, decrement counter Jump if Rx is 0 
 JUMPZ R0, E We’re done testing, store the result Jump if Rx is 0 
A SUB R7, R7, R1 Decrement counter, d(4) is 0 Subtract 
 JUMPZ R0, B Go back and test d(5) Jump if Rx is 0 
C SUB R7, R1, R1 Decrement counter, d(5) is 0 Subtract 
E MOV 9, R7 Store the result Store 

 
 

- Now, let’s assume that we want to count up instead of down… 
 

 MOV R0, #0 Initialize the result to 0 Load constant 
 MOV R1, #1 Load constant 1 into R1 

(use for incrementing result) 
Load constant 

 MOV R2, 4 Get data memory location 4 Load 
 JUMPZ R2, p If zero, skip the next instruction Jump if zero 
 Add R0, R0, R1 Non zero, so increment result Add 
p MOV R2, 5 Get data memory location 5 Load 
 JMPZ R2, q If zero, skip next instruction Jump if zero 
 Add R0, R0, R1 Non zero, so increment result Add 
q MOV 9, R0 Store result in data memory 

location 9 
Store 

 
 
 
 
 
 
 
 
 
 
 



Part F:  Setting Control Signals and Modifying the Datapath (for 6-instruction)   
 
Extending the Control Unit and Datapath 

1. The load constant instruction…  
a. …requires that the register file be able to load data from IR[7..0] 
b. …in addition to data from data memory or the ALU output; thus, we widen the register file’s 

multiplexer from 2x1 to 3x1, add another mux control signal, and also create a new signal 
coming from the controller labeled RF_W_data, which will connect with IR[7..0]. 

 
2. The subtract instruction requires that we use an ALU capable of subtraction, so we add another ALU 

control signal. 
 

3. The jump-if-zero instruction requires that we be able to detect if a register is zero, and that we be able 
to add IR[7..0] to the PC. 

a. We insert a datapath component to detect if the register file’s Rp read port is all zeros (that 
component would just be a NOR gate).  

b. We also upgrade the PC register so it can be loaded with PC plus IR[7..0]. The adder used for 
this also subtracts 1 from the sum, to compensate for the fact that the Fetch state already added 
1 to the PC. 

 
Part G:  Design Level Examples           
Question 1: 
Assume that you have the following piece of C-code: 
 
 for (i=1; i<5; i++) { 
  a = a + a; 
 } 
 b = a; 
 
Part A: 
Assuming the instruction set associated with the 6-instruction processor, translate this C-code to machine 
instructions.  You should assume that a = R1 and b = d(9).  (You’ll need to make a few other assumptions too, 
but this is for you to figure out.) 
 
Start with pseudo-code: 

- Load max loop count 
- Load constant to update count 
- ** Perform Add (note – only “computation”) 
- Update counter 
- Check counter value 

o If 0, store result 
o If not 0, go back to ** 

- Store result 
 
Machine code: 
 MOV R2, #4   // Use load constant; initialize to 4 b/c of < 5, not <= 5 
 MOV  R3, #1   // Use load constant; put #1 in register 
Y: ADD  R1, R1, R1  // Perform add; use add 
 SUB R2, R2, R3  // Decrement counter; use subtract result 
 JUMPZ R2, X   // Goto X if counter = 0 (we’re done…) 
 JUMPZ R0, Y   // If not, 0, need to do again (R0 == 0) 
        (y must be negative; PC = PC – offset) 
X: MOV 9, R1   // Store result 



Question 2: 
 
Part A: 
In this question, we’re going to work with the initial datapath for the 3-instruction processor (shown below).  
Let’s assume that we want to modify this datapath to add an instruction that performs a “add immediate” 
operation.  In terms of register transfer language (RTL), describe what the instruction should do during the 
execute stage:   
 
  Rx  Ra + IR(3:0) 
 
Thus, if we assume that the opcode for this new instruction (let’s call it ADDi) is 1101, then a sample bit 
encoding might look something like this: 
 
  1101  #  0101 #  0111  # 0001 
 
This instruction would do the following: 
 
  R5  R7 + 1 
 
Part B: 
Modify the datapath so that we can successfully execute the new ADDi instruction: 
 

   (spare) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part C: 
Using the new datapath you’ve designed, write out the machine instructions for performing the sequence of 
operations: 
 
 a = b + c;   // A = R1, B = R2, C = R3 
 c = c + 12;   //  
 b = a + 1; 
 d = b + 19;   // D = R4 
 
Answer: 
  

ADD R3, R1, R2 
 ADDi R3, R3, #12 
 ADDi R2, R1, #1 
 MOV R5, 19 
 ADD R4, R2, R5 
 
Part D: 
For comparison, let’s write out the sequence of instructions to perform the same sequence of operations 
without the new instruction.  Quantify how much the new instruction helps. 
 
 ADD R3, R1, R2 
 MOV R7, #12 
 ADD R3, R3, R7 
 MOV  R8, #1 
 ADD R2, R1, R8 
 MOV  R5, #19 
 ADD R4, R2, R5 
 
Each instruction takes 3 cycles.  From Part C, 5 instructions are required with the ADDi instruction.  Without the 
ADDi instruction, 7 instructions are required.  Thus, if each instruction takes 3 CCs, then the solution from Part 
D will be take (21/15 = 1.4) 40% longer than the solution in Part C.  For the amount of hardware required to 
implement it, this would probably be a pretty good design decision. 
 

 


