Lectures 04
Architectural-level Performance
Metrics

Suggested reading:
(the remainder of HP Chapter 1)



Processor comparison
N

for i=0; i<5; i++ {
a = (a*b) + c;

}

MULT r1,r2,r3 #r1 < r2*r3
ADD r2,r1,r4 ‘1, #1r2 € ri4rd

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100




Fundamental lesson(s)

How to quantitatively compare and contrast different
computer architectures



Why it’s important...

- You'll use the analysis techniques discussed today for
the rest of the semester ...

— ... SO0 in order to get a good grade in the class, you
should be sure that your comfortable with the material

- If you're making / desighing HW, you need to hit certain
performance metrics

- If you're buying hardware, you want to make sure it
meets your software needs

— I.e. you may want to achieve a certain execution time, etc.



Which is “the best”?




Measuring and improving performance

(if planes were computers)
Which is best?

Plane People| Range | Speed| Avg. Cost
(miles)| (mph) | (millions)

737-800 162 | 3,060 | 530 63.5
747-8l 467 8000 633 257.5
777-300 368 5995 622 222

787-8 230 8000 630 153




An “architecture” example

1 GHz clock rate, each
instruction takes ~1.2 cycles to
execute

How do we determine
I - 1 9 ® e o
which machine is better" MOV R1, d(8)

Add R2, R3, Rl
Sub R5, R2, Rl
MOV d(9) R5

2 GHz clock rate, each Add R4, R3, RO
instruction takes ~1.8 cycles to .o
execute



May be a minimum performance requirement
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Fig. 1. Performance requirements for various applications based on frame rate and resolution [6]. Yellow dashed line shows
limit of H.264/AVC standard. Next-generation standard is expected to reach above this line.
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Power and energy are important too

Monitoring Sample # Cycles/ Processor
Rate Sample Frequency
= Pulseoximetry 1kHz 331 331kHz
@ Single-lead ECG | 200Hz 4990 1MHz
e 12-lead ECG 1kHz 25700 25.7MHz

Fig. 2. Scenarios for monitoring cardiac activity with varying
real-time processing demands. For each application, locations of
electrodes/probes on the body are shown, as well as the required clock
frequency of the sensor processor. (Photos courtesy of GANFYD.)
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Architecture: kinda like dating...

Intelligent

Attractive Available
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Characterizing Performance

- How can one computer’s performance be understood or
two computers be compared?

- What factors go into achieving “good performance”?
— Raw CPU speed?
— Memory speed or bandwidth?
— I/O speed or bandwidth?
— The operating system’s overhead?
— The compiler?
— Battery life?

- Critical to succinctly summarize performance, and
meaningfully compare.
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Common (and good) performance metrics

- latency: response time, execution time
— good metric for fixed amount of work (minimize time)

- throughput: work per unit time
— = (1/latency) when there is NO OVERLAP 2.... ""2

10 time units

— > (1/ latency) when there is overlap 00000 Finish

- in real processors there is always overlap 088880 | caeh

— good metric for fixed amount of time (maximize work)

- comparing performance

— A is N times faster than B if and only if:
- perf(A)/perf(B) = time(B)/time(A) = N

— A is X% faster than B if and only if:
- perf(A)/perf(B) = time(B)/time(A) =1 + X/100
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Throughput vs. Latency

- What is better?
— A machine that always takes 1 ns to do “task X” 1 time

— A machine that takes 15 ns to do “task X” 30 times...
« ...but 5 ns to do “task X” 1 time

— Machine 1:
- a lower latency for a single operation...

— Machine 2:
- better throughput for multiple operations

— What’s better?
- depends on what kind of computation you need to do
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Take away?

- Execution time and throughput are really good
performance metrics in that they’re “lowest common

denominators”

 (i.e. if X finishes in 5 seconds and Y finishes in 10, its
hard to make the case that Y is faster!)
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A CPU : The Bigger Picture

I :
nstructions y Clock cyclesx Seconds ~ Seconds _ CPU time

Program  Instruction Clock Cycle  Pr ogram

- We can see CPU performance dependent on:
- Clock rate, CPI, and instruction count
- CPU time is directly proportional to all 3:
X %
X %
- But, everything usually affects everything:

Hardware 0 izati Compiler
rganization Technology

Technology

Clock Cycle CPI Instruction
Time Count
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IC, CPIl and IPC

Consider the following:

1 2 34 5 6 7 89 1011 12 13 14 15 time

Total Execution Time =15 cycles

Instruction Count (IC) = Number of Instructions =10

Average number of cycles per instruction (CPI) =15/10=1.5
Instructions per Cycle (IPC) =10/15 = 0.66
Can CPl<1?
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Different Types of Instructions

Multiplication takes more time than addition

Floating point operations take longer than integer
operations

Memory accesses take more time than register accesses
CPU Clock Cycles = E CPI. =« IC, = AvgCPI = IC
1=1

NOTE:

— changing the cycle time often affects the number of cycles
an instruction will take
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Question: Measurement Comparison

Given that two machines have the same ISA, which
measurement is always the same for both machines
running program P?

— Clock Rate:

— CPI:

— Execution Time:

— Number of Instructions:
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The Power of Compiler

A compiler designer is trying to decide between two code
sequences for a particular machine. The machine supports
three classes of instructions: A, B, and C, which take one,
two, and three cycles (respectively):

Sequence 1 contains: 2A’s, 1 B,and 2 C’s
Sequence 2 contains: 4 A’s,1B,and 1 C

Which sequence is faster? By how much? What is the CPI
of each?




Metrics

- Metrics Discussed:
— Execution time (instructions, cycles, seconds)
— Machine throughput (programs/second)
— Cycles Per Instruction (CPI)
— Instructions Per Cycle (IPC)

« Other Common Measures
— millions of instructions per second (MIPS)
— millions of floating point operations per second (MFLOPS)

IC

seconds x 10°

MIPS =

=IPC x fux (MHz)
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Not all benchmarks are good...

- Example: MIPS (millions of instructions per second)

— instruction count is not a reliable indicator of work
- Prob #1: some optimizations add instructions

- Prob #2: work per instruction varies
— (FP mult >> register move)

- Prob #3: ISAs not equal (3 Pentium instrs !=3 AMD instrs)

— You’ll see more when we talk about addressing modes
» Addi vs. no Addi from Lecture 03 is a good example
» Addi =1 instruction, 3 cycles;
» |f no Addi, need 2 instructions —and 6 CCs!




Good Benchmarks: Real Programs

- real programs
— (plus) only accurate way to characterize performance
— (minus) requires considerable work (porting)

- Standard Performance Evaluation Corporation (SPEC)
— http://www.spec.org
— collects, standardizes and distributes benchmark suites
— consortium made up of industry leaders

— SPEC CPU (CPU intensive benchmarks)
- SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006

— other benchmark suites
- SPECjvm, SPECmail, SPECweb

Other benchmark suite examples: TPC-C, TPC-H for databases
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SPEC CPU 2000

- 12 mteger programs (C, C++)
- gcc (compiler), perl (interpreter), vortex (database)
- bzip2, gzip (compression tools), crafty (chess)
- eon (rendering), gap (group theoretic enumerations)
- twolf, vpr (FPGA place and route)
- parser (grammar checker), mcf (network optimization)

- 14 floatlng point programs (C, FORTRAN)

swim (shallow water model), mgrid (multigrid field solver)
- applu (partial diffeqg’s), apsi (air pollution simulation)
- wupwise (quantum chromodynamics), mesa (OpenGL library)
- art (neural network image recognition),
- equake (wave propagation)
- fma3d (crash simulation), sixtrack (accelerator design)

- lucas (primality testing), galgel (fluid dynamics), ammp
(chemistry)



What to expect from a benchmark suite

- Different programs in the suite stress different parts of
the architecture
— For example:
- One benchmark may be memory intensive...
- ...another may be compute intensive...
- ...another may be I/O intensive...

— ldeally, show wins on all aspects
« (but most often not the case — which is OK)
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Other suites

bedded benchmark suite

1ve em
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Some additional examples
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Amdahl’s Law

- Qualifies performance gain

- Amdahl’s Law defined...

- The performance improvement to be gained from using
some faster mode of execution is limited by the amount
of time the enhancement is actually used.

- Amdahl’s Law defines speedup:

Execution time for entire task without enhancement

Speedup =
P P Execution time for entire task using enhancement

when possible
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Amdahl’s Law and Speedup

- Speedup tells us how much faster the machine will run
with an enhancement

- 2 things to consider:

- 1st...
- Fraction of the computation time in the original machine that
can use the enhancement

- i.e. If a program executes in 30 seconds and 15 seconds of
exec. uses enhancement, fraction = 2 (always < 1)

- 2nd...
- Improvement gained by enhancement (i.e. how much faster
does the program run overall)

- i.e. if enhanced task takes 3.5 seconds and original task took
7, we say the speedup is 2 (always > 1)

28



Deriving the previous formula

Execution Time,, ([ 1 h
Speedup,era = =

Execution Time, ., Fraction_ ,,..ceq
(1 - Fraction,,anceq) + o

C \ Speedu penhanced )

1 < normalized old execution time

. raction
(1 - FraCtlonenhanced) + [F enhanced
> Y - Lspeedupenhanced

1 - % enhanced
(i.e. part of the task % of task that will run faster
will take the same
amount of time as
before) (note: # should be <1)
(otherwise, performance gets worse)
(represents new component of ex. time)

how much faster it will run
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Amdahl’s Law examples




