Lectures 04
Architectural-level Performance
Metrics

Suggested reading:
(the remainder of HP Chapter 1)



Processor comparison
N

for i=0; i<5; i++ {
a = (a*b) + c;

}

MULT r1,r2,r3 #r1 < r2*r3
ADD r2,r1,r4 ‘1, #1r2 € ri4rd

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100




Fundamental lesson(s)

How to quantitatively compare and contrast different
computer architectures



Why it’s important...

- You'll use the analysis techniques discussed today for
the rest of the semester ...

— ... SO0 in order to get a good grade in the class, you
should be sure that your comfortable with the material

- If you're making / desighing HW, you need to hit certain
performance metrics

- If you're buying hardware, you want to make sure it
meets your software needs

— I.e. you may want to achieve a certain execution time, etc.



Which is “the best”?




Measuring and improving performance

(if planes were computers)
Which is best?

Plane People| Range | Speed| Avg. Cost
(miles)| (mph) | (millions)

737-800 162 | 3,060 | 530 63.5
747-8l 467 8000 633 257.5
777-300 368 5995 622 222

787-8 230 8000 630 153




An “architecture” example

1 GHz clock rate, each
instruction takes ~1.2 cycles to
execute

How do we determine
I - 1 9 ® e o
which machine is better" MOV R1, d(8)

Add R2, R3, Rl
Sub R5, R2, Rl
MOV d(9) R5

2 GHz clock rate, each Add R4, R3, RO
instruction takes ~1.8 cycles to .o
execute



May be a minimum performance requirement

Cellphone

x 108 Portable Player

15

: NTSC Standard Definition
10 - Television Broadcast (SDTV) and DVD
High Definition Television

Broadcast (HDTV) and Blu-Ray DVD

54

¥ X % X

4kx2k (4096x2048)

- 1080HD (1920x1080)
720HD (1280x720)

Pixel Rate (pixels per second)

£ _
9, : 525SD (720x480 e)
e, 60 CIF I k@™
S (352x288) et
() = e\SQ
@‘90; : - VK
S 15 QCIF (176x144) oW
g, Qe>
S
%)
“y

Fig. 1. Performance requirements for various applications based on frame rate and resolution [6]. Yellow dashed line shows
limit of H.264/AVC standard. Next-generation standard is expected to reach above this line.

TeChnOIOgieS for UltradYBMiC By ANANTHA P. CHANDRAKASAN, Fellow IEEE, DENIS C. DALY, Member IEEE,

DANIEL FREDERIC FINCHELSTEIN, Member IEEE, JOYCE KWONG, Student Member IEEE,
YoGEsH KUMAR RAMADASS, Member IEEE, MAHMUT ERSIN SINANGIL, Student Member IEEE,

°
VOlta‘ge Sca'llng VIVIENNE SZE, Student Member IEEE, AND NAVEEN VERMA, Member IEEE

Vol. 98, No. 2, February 2010 | PROCEEDINGS OF THE IEEE



Power and energy are important too

Monitoring Sample # Cycles/ Processor
Rate Sample Frequency
= Pulseoximetry 1kHz 331 331kHz
@ Single-lead ECG | 200Hz 4990 1MHz
e 12-lead ECG 1kHz 25700 25.7MHz

Fig. 2. Scenarios for monitoring cardiac activity with varying
real-time processing demands. For each application, locations of
electrodes/probes on the body are shown, as well as the required clock
frequency of the sensor processor. (Photos courtesy of GANFYD.)

Technologies for Ultradynamic

Voltage Scaling

By ANANTHA P. CHANDRAKASAN, Fellow IEEE, DENIS C. DALY, Member IEEE,

DANIEL FREDERIC FINCHELSTEIN, Member IEEE, JOYCE KWONG, Student Member IEEE,
YoGEsH KUMAR RAMADASS, Member IEEE, MAHMUT ERSIN SINANGIL, Student Member IEEE,
VIVIENNE SZE, Student Member IEEE, AND NAVEEN VERMA, Member IEEE

Vol. 98, No. 2, February 2010 | PROCEEDINGS OF THE IEEE



Architecture: kinda like dating...

Intelligent

Attractive Available

10



Characterizing Performance

- How can one computer’s performance be understood or
two computers be compared?

- What factors go into achieving “good performance”?
— Raw CPU speed?
— Memory speed or bandwidth?
— I/O speed or bandwidth?
— The operating system’s overhead?
— The compiler?
— Battery life?

- Critical to succinctly summarize performance, and
meaningfully compare.

11



Common (and good) performance metrics

- latency: response time, execution time
— good metric for fixed amount of work (minimize time)

- throughput: work per unit time
— = (1/latency) when there is NO OVERLAP 2.... ""2

10 time units

— > (1/ latency) when there is overlap 00000 Finish

- in real processors there is always overlap 088880 | caeh

— good metric for fixed amount of time (maximize work)

- comparing performance

— A is N times faster than B if and only if:
- perf(A)/perf(B) = time(B)/time(A) = N

— A is X% faster than B if and only if:
- perf(A)/perf(B) = time(B)/time(A) =1 + X/100

12



Throughput vs. Latency

- What is better?
— A machine that always takes 1 ns to do “task X” 1 time

— A machine that takes 15 ns to do “task X” 30 times...
« ...but 5 ns to do “task X” 1 time

— Machine 1:
- a lower latency for a single operation...

— Machine 2:
- better throughput for multiple operations

— What’s better?
- depends on what kind of computation you need to do

13



Take away?

- Execution time and throughput are really good
performance metrics in that they’re “lowest common

denominators”

 (i.e. if X finishes in 5 seconds and Y finishes in 10, its
hard to make the case that Y is faster!)

14



A CPU : The Bigger Picture

I :
nstructions y Clock cyclesx Seconds ~ Seconds _ CPU time

Program  Instruction Clock Cycle  Pr ogram

- We can see CPU performance dependent on:
- Clock rate, CPI, and instruction count
- CPU time is directly proportional to all 3:
X %
X %
- But, everything usually affects everything:

Hardware 0 izati Compiler
rganization Technology

Technology

Clock Cycle CPI Instruction
Time Count

15



IC, CPIl and IPC

Consider the following:

1 2 34 5 6 7 89 1011 12 13 14 15 time

Total Execution Time =15 cycles

Instruction Count (IC) = Number of Instructions =10

Average number of cycles per instruction (CPI) =15/10=1.5
Instructions per Cycle (IPC) =10/15 = 0.66
Can CPl<1?

16



Different Types of Instructions

Multiplication takes more time than addition

Floating point operations take longer than integer
operations

Memory accesses take more time than register accesses
CPU Clock Cycles = E CPI. =« IC, = AvgCPI = IC
1=1

NOTE:

— changing the cycle time often affects the number of cycles
an instruction will take

17



Question: Measurement Comparison

Given that two machines have the same ISA, which
measurement is always the same for both machines
running program P?

— Clock Rate:

— CPI:

— Execution Time:

— Number of Instructions:

18



The Power of Compiler

A compiler designer is trying to decide between two code
sequences for a particular machine. The machine supports
three classes of instructions: A, B, and C, which take one,
two, and three cycles (respectively):

Sequence 1 contains: 2A’s, 1 B,and 2 C’s
Sequence 2 contains: 4 A’s,1B,and 1 C

Which sequence is faster? By how much? What is the CPI
of each?




Metrics

- Metrics Discussed:
— Execution time (instructions, cycles, seconds)
— Machine throughput (programs/second)
— Cycles Per Instruction (CPI)
— Instructions Per Cycle (IPC)

« Other Common Measures
— millions of instructions per second (MIPS)
— millions of floating point operations per second (MFLOPS)

IC

seconds x 10°

MIPS =

=IPC x fux (MHz)

20



Not all benchmarks are good...

- Example: MIPS (millions of instructions per second)

— instruction count is not a reliable indicator of work
- Prob #1: some optimizations add instructions

- Prob #2: work per instruction varies
— (FP mult >> register move)

- Prob #3: ISAs not equal (3 Pentium instrs !=3 AMD instrs)

— You’ll see more when we talk about addressing modes
» Addi vs. no Addi from Lecture 03 is a good example
» Addi =1 instruction, 3 cycles;
» |f no Addi, need 2 instructions —and 6 CCs!




Good Benchmarks: Real Programs

- real programs
— (plus) only accurate way to characterize performance
— (minus) requires considerable work (porting)

- Standard Performance Evaluation Corporation (SPEC)
— http://www.spec.org
— collects, standardizes and distributes benchmark suites
— consortium made up of industry leaders

— SPEC CPU (CPU intensive benchmarks)
- SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006

— other benchmark suites
- SPECjvm, SPECmail, SPECweb

Other benchmark suite examples: TPC-C, TPC-H for databases

22



SPEC CPU 2000

- 12 mteger programs (C, C++)
- gcc (compiler), perl (interpreter), vortex (database)
- bzip2, gzip (compression tools), crafty (chess)
- eon (rendering), gap (group theoretic enumerations)
- twolf, vpr (FPGA place and route)
- parser (grammar checker), mcf (network optimization)

- 14 floatlng point programs (C, FORTRAN)

swim (shallow water model), mgrid (multigrid field solver)
- applu (partial diffeqg’s), apsi (air pollution simulation)
- wupwise (quantum chromodynamics), mesa (OpenGL library)
- art (neural network image recognition),
- equake (wave propagation)
- fma3d (crash simulation), sixtrack (accelerator design)

- lucas (primality testing), galgel (fluid dynamics), ammp
(chemistry)



What to expect from a benchmark suite

- Different programs in the suite stress different parts of
the architecture
— For example:
- One benchmark may be memory intensive...
- ...another may be compute intensive...
- ...another may be I/O intensive...

— ldeally, show wins on all aspects
« (but most often not the case — which is OK)

24



Other suites

bedded benchmark suite

1ve em

A free, commercially representat

MiBench

Table 1: MiBench Benchmarks

Telecomm.

Security

Network

Office

Consumer

Auto./Industrial

00310Mm1

Il

L o
00ested m
N

| 00Fowr m
00dizs8 w2

,|«|] 00993

9podap wsg

e o
_|<|

e oo und

‘D salcore M xscale CDhighend ‘

b R
4|

£

| 144 5

Q

ISIOAUTL [ O

— S
| [45e); 0]

vys

9pooua [oepulix

ity

9poousd3d

_——

——
ﬂ\ 9p0ooap' [oepulix

e —

|

apooap-d3d

Secur

)

QpOOUS YSTIMO[q

| E—
h—— R

yoreassurns

| S—
m—— s

T ks

Office

TE—
| S—

1duosisoys

erotned

—— i

Network

| 1osadAy

uerpauyn

=] o

eqIgyn

Consumer

T—— il
_|<|

pew

E—

apooud 3adl

9pooap-Sadl

Sunpoows uesns

sa3poruesns

SIQUIOD uesns

osb

Auto

JuNodYIq

pewdIseq

3.5 q

25

25



Some additional examples

26



Amdahl’s Law

- Qualifies performance gain

- Amdahl’s Law defined...

- The performance improvement to be gained from using
some faster mode of execution is limited by the amount
of time the enhancement is actually used.

- Amdahl’s Law defines speedup:

Execution time for entire task without enhancement

Speedup =
P P Execution time for entire task using enhancement

when possible

27



Amdahl’s Law and Speedup

- Speedup tells us how much faster the machine will run
with an enhancement

- 2 things to consider:

- 1st...
- Fraction of the computation time in the original machine that
can use the enhancement

- i.e. If a program executes in 30 seconds and 15 seconds of
exec. uses enhancement, fraction = 2 (always < 1)

- 2nd...
- Improvement gained by enhancement (i.e. how much faster
does the program run overall)

- i.e. if enhanced task takes 3.5 seconds and original task took
7, we say the speedup is 2 (always > 1)

28



Deriving the previous formula

Execution Time,, ([ 1 h
Speedup,era = =

Execution Time, ., Fraction_ ,,..ceq
(1 - Fraction,,anceq) + o

C \ Speedu penhanced )

1 < normalized old execution time

. raction
(1 - FraCtlonenhanced) + [F enhanced
> Y - Lspeedupenhanced

1 - % enhanced
(i.e. part of the task % of task that will run faster
will take the same
amount of time as
before) (note: # should be <1)
(otherwise, performance gets worse)
(represents new component of ex. time)

how much faster it will run

29



Amdahl’s Law examples




