CSE 30321 - Lecture 04 - In Class Example Handout

Part A: An Initial CPU Time Example

Question 1:

Preface:

We can modify the datapath from Lecture 02-03 of the 3-instruction processor to add an instruction that performs an ALU operation on any two memory locations and stores the result in a register file location.
(We would need to add 2 multiplexers - ALU_Mux1 and ALU_Mux2 - to the inputs to the ALU to select between an input from the register file and an input from data memory.)

Note that if we wanted to perform the operation $\mathrm{d}(4)=\mathrm{d}(5)+\mathrm{d}(6)+\mathrm{d}(7)$ with the old datapath (i.e. before the enhancement) we would need a total of 6 instructions. However, with the new datapath, we would only need 4 instructions:


```
Un-enhanced Solution:
MOV R1, d(5)
MOV R2, d(6)
MOV R3, d(7)
Add R4, R1, R2
Add R5, R4, R3
MOV d(4), R5
Un-enhanced Solution:
MOV R1, \(\mathrm{d}(5)\)
MOV R2, \(\mathrm{d}(6)\)
MOV R3, \(\mathrm{d}(7)\)
Add R4, R1, R2
Add R5, R4, R3
MOV \(\mathrm{d}(4), \mathrm{R} 5\)
Enhanced Solution:
Add R1, d(5), d(6)
MOV R2, d(7)
Add R3, R1, R2
MOV d(4), R3
Mov (4), R5
```

From the standpoint of instruction count alone, the enhanced solution looks better. But is it?

Part A:

Assume that each instruction really does just take 3 CCs to execute (1 each for fetch, decode, and execute). Also, assume that clock rates of both 1 GHz and 2 GHz are possible. Calculate the CPU time of the un-enhanced and enhanced design assuming the 2 different clock rates. What is the potential "swing" in performance?

We can start with the CPU time formula - remember that execution time is the best metric...

$$
\text { CPU Time }=\frac{\text { instructions }}{\text { program }} \times \frac{\text { cycles }}{\text { instruction }} \times \frac{\text { seconds }}{\text { cycles }}
$$

Time (un-enhanced, 1 GHz$) \quad=(6 \mathrm{ins})(3 \mathrm{CCs})\left(1 \times 10^{-9} \mathrm{~s}\right) \quad=1.8 \times 10^{-8} \mathrm{~s}=18 \mathrm{~ns}$
Time (un-enhanced, $2 \mathrm{GHz}=(6 \mathrm{ins})(3 \mathrm{CCs})\left(0.5 \times 10^{-9} \mathrm{~s}\right) \quad=9.0 \times 10^{-9} \mathrm{~s}=9 \mathrm{~ns}$

- (above is easy to compare; instruction count, CPI are constants)
*** Be sure that you understand where $1 \times 10^{-9} \mathrm{~s}$ and $0.5 \times 10^{-9} \mathrm{~s}$ comes from ***

```
Time (enhanced, 1 GHz) = (4 ins)(3 CCs)(1 x 10-9 s) = 1.2 < 10-8 s = 12 ns
```

- (comparing this to the un-enhanced, 10 MHz version - its better to improve clock rate)

Time (enhanced, 2 GHz$) \quad=(4 \mathrm{ins})(3 \mathrm{CCs})\left(0.5 \times 10^{-9} \mathrm{~s}\right) \quad=6.0 \times 10^{-9} \mathrm{~s}=6 \mathrm{~ns}$

- (faster clock rate, fewer instructions = best)

Part B:

In reality, an instruction that requires a memory reference will require more clock cycles than an instruction that operates on data that's just in registers. If the new ADD instruction requires 5 clock cycles, what is the average CPI for the different instruction mixes shown above?

- Here, need to take into account \% of instructions with different CCs
- For un-enhanced, easy: $100 \% \times(3)=3$ CCs/instruction
- For enhanced, we can see that 1 instruction out of 4 requires 5 CCs
- Therefore $(0.75)(3)+(0.25)(5)=3.5 \mathrm{CCs} /$ instruction
- Note, CPI not as good (3.5 vs. 3.0)
- So, what's the advantage? Enhanced version uses fewer instructions...

Part C:

Repeat Part A given the assumptions of Part B.

Recall base case:

Time (un-enhanced, 1 GHz$) \quad=(6 \mathrm{ins})(3 \mathrm{CCs})\left(1 \times 10^{-9} \mathrm{~s}\right) \quad=1.8 \times 10^{-8} \mathrm{~s}=18 \mathrm{~ns}$
Time (un-enhanced, 2 GHz$) \quad=(6 \mathrm{ins})(3 \mathrm{CCs})\left(0.5 \times 10^{-9} \mathrm{~s}\right) \quad=9.0 \times 10^{-9} \mathrm{~s}=9 \mathrm{~ns}$

Time (enhanced, 1 GHz) - (4 instructions) $\times(3.5 \mathrm{CC} /$ instruction $) \times\left(1.0 \times 10^{-9} \mathrm{~s}\right)=\mathbf{1 . 4} \mathbf{x 1 0 ^ { - 8 }} \mathbf{s}$

- Compare to last time - ($\left.1.2 \times 10^{-8} \mathrm{~s}\right)$
- Therefore, with greater CPI, enhanced version is $\sim 16.7 \%$ slower!
- Although still better...

Time (enhanced, 2 GHz$)-(4$ instructions $) \times(3.5 \mathrm{CC} /$ instruction $) \times\left(0.5 \times 10^{-9} \mathrm{~s}\right)=7.0 \times 10^{-9} \mathrm{~s}$

Before:

Time (un-enhanced, 2 GHz) $=9.0 \times 10^{-9} \mathrm{~s}$ Time (enhanced, 2 GHz) $=6 \times 10^{-9} \mathrm{~s}$ 50 \% speedup

After:

Time (un-enhanced, 2 GHz) $=9.0 \times 10^{-9} \mathrm{~s}$
Time (enhanced, 2 GHz) $=7.0 \times 10^{-9} \mathrm{~s}$
28.5\% speedup

Not as good - but more realistic.

Question 2:

You are given two implementations of the same Instruction Set Architecture (ISA):

Machine	Cycle Time	CPI
A	1 ns	2.0
B	2 ns	1.2

Part A:

What does "two implementations of the same ISA" really mean anyway?

- Instruction count will be the same
- Hence, possible instructions to translate code to is the same on both machines
- Therefore only one way to do i++ for example
- Then, how can CPI be different?
- 1 example:
- memory-to-register (load); path from $\mathrm{M} \rightarrow \mathrm{R}=2 \mathrm{CCs}$ or 1 CC
- HW / organization based - see Venn diagram

Part B:
Which machine is faster? By how much?

- $\mathrm{t}_{\mathrm{a}}=\mathrm{n} \times 2.0 \times 1.0 \mathrm{~ns}=2.0(\mathrm{n}) \mathrm{ns}$
- $t_{b}=n \times 1.2 \times 2.0 \mathrm{~ns}=2.4(\mathrm{n}) \mathrm{ns}$
(24 / $20=1.2 X$ faster $)$

Part B: The Impact of the Compiler

Question 1:

A compiler designer is trying to decide between two code sequences for a particular machine. The machine supports three classes of instructions: A, B, and C.
(Note A might be ALU instructions - like Adds, B might be Jumps, and C might be Loads and Stores).

- Class A takes 3 clock cycle to execute
- Class B takes 5 clock cycles to execute
- Class C takes 6 clock cycles to execute

We now have two sequences of instructions made up of Class A, B, and C instructions respectively.
Let's assume that:

- Sequence 1 contains: 200 A's, 100 B's, and 200 C's
- Sequence 2 contains: 400 A's, 100 B's, and 50 C's

Questions:

- Which sequence is faster?
- By how much?
- What is the CPI of each?

Recall CPU Time $=$ CPU Time $=\frac{\text { instructions }}{\text { program }} \times \frac{\text { cycles }}{\text { instruction }} \times \frac{\text { seconds }}{\text { cycle }}$

- No information give about clock rate - therefore, we can assume its X
- Instructions / program (sequence 1) $=500$
- Instructions / program (sequence 2) $=550$

```
What's the CPI?
CPI (Seq 1) = (200/500)(3) + (100/500)(5) + (200/500)(6)
    =(0.4 x 3) + (0.2 x 5) + (0.4 x 6)
    = 4.6
CPI (Seq 2) = (400/550)(3) +(100/550)(5) + (50/550)(6)
    = ((0.727) x 3) +((0.182) x 5) + ((0.091) x 6)
    = 3.636
Time (1) = 500 x 4.6 x X = 2300X
Time (2) = 550 x 3.636 x X = 2000X
```


Part C: Bad Benchmarks

Question 1:

Two compilers are being tested for a 1 GHz machine with 3 classes of instructions A, B, and C - again, requiring 1, 2 , and 3 clock cycles respectively.

Instruction Type	Cycles per Instruction (CPI)
A	1
B	2
C	3

Compiler	\# of A instructions	\# of B instructions	\# of C instructions	Total
1	5 M	1 M	1 M	7 M
2	10 M	1 M	1 M	12 M

Compiler	Cycles from type A	Cycles from type B	Cycles from type C	Total
1	$\begin{gathered} \left(5 \times 10^{6}\right. \text { inst.)(1 CC/ inst.) } \\ 5 \times 10^{6} \mathrm{CCs} \end{gathered}$	$\begin{gathered} \left(1 \times 10^{6}\right. \text { inst.)(2 CC/ inst.) } \\ 2 \times 10^{6} \mathrm{CCs} \end{gathered}$	$\begin{gathered} \left(1 \times 10^{6}\right. \text { inst.)(3 CC/ inst.) } \\ 3 \times 10^{6} \mathrm{CCs} \end{gathered}$	10 M
2	$\begin{gathered} \left(10 \times 10^{6}\right. \text { inst.)(1 CC/ inst.) } \\ 10 \times 10^{6} \mathrm{CCs} \end{gathered}$	$\begin{gathered} \left(1 \times 10^{6}\right. \text { inst.)(2 CC/ inst.) } \\ 2 \times 10^{6} \mathrm{CCs} \\ \hline \end{gathered}$	$\begin{gathered} \left(1 \times 10^{6}\right. \text { inst.)(3 CC/inst.) } \\ 3 \times 10^{6} \mathrm{CCs} \\ \hline \end{gathered}$	15 M

Which sequence will produce more millions of instructions per clock cycle (MIPS)?

Seq $1-$ Millions instructions/s	$=$
	$=$$\left(7 \times 10^{6}\right.$ instructions) $/\left(10 \times 10^{6}\right.$ cycles $\left.\times 1 \times 10^{-9} \mathrm{~s} / \mathrm{CC}\right)$ (therefore MIPS rating is 700$)$
Seq $2-$ Millions instructions/s	$=$
	$=$$\left(12 \times 10^{6}\right.$ instructions) $/\left(15 \times 10^{6}\right.$ cycles $\left.\times 1 \times 10^{-9} \mathrm{~s} / \mathrm{CC}\right)$ (therefore MIPS rating is 800 million instructions $/ \mathrm{s}$

Is sequence 2 seemingly better?
Which sequence is faster?

CPU time $_{1}$	$=$	$(7 \mathrm{M}$ inst. $)$	$\mathbf{x}((5 / 7)(1)+(1 / 7)(2)+(1 / 7)(3)) \mathrm{CC} / \mathrm{inst}$.	$\mathbf{x} 10^{-9} \mathrm{~s} / \mathrm{CC}$
	$=0.01 \mathrm{~s}$			
CPU time $_{1}$	$=(12 \mathrm{M}$ inst. $)$	$\mathbf{x}((10 / 12)(1)+(1 / 12)(2)+(1 / 12)(3)) \mathrm{CC} / \mathrm{inst}$.	$\mathbf{x} 10^{-9} \mathrm{~s} / \mathrm{CC}$	
	$=0.015 \mathrm{~s}!$			

More MIPS, more time - sequence 1 solves problem "more efficiently"

Part D: Other Examples

Question 1:

Let's assume that we have a CPU that executes the following mix of instructions:

- 43% are ALU operations (i.e. adds, subtracts, etc.) that take 1 CC
- 21% are Load instructions (i.e. that bring data from memory to a register) that take 1 CC
- 12% are Store instructions (i.e. that write data in a register to memory) that take 2 CCs
- 24% are Jump instructions (i.e. that help to implement conditionals, etc.) that take 2 CCs

What happens if we implement 1 CC stores at the expense of a 15% slower clock?
Is this change a good idea?
CPU time (v1):

```
    \(=\quad(\#\) of instructions \() \times\left(\left(0.43^{*} 1\right)+\left(0.21^{*} 1\right)+\left(0.12^{*} 2\right)+\left(0.24^{*} 2\right)\right) \times(\) clock \()\)
    \(=\quad \mathrm{I} \times(1.36) \times\) clock
```

CPU time (v2):

```
= (# of instructions) x ((0.43*1) + (0.21*1) + (0.12*1) + (0.24*2)) x (clock x 1.15)
= Ix (1.24) x (1.15 x clock)
    = I x 1.426 x clock
```

v2 is $1.426 / 1.36=\sim 5 \%$ slower

Question 2:

Assume that you have the following mix of instructions with average CPIs:

	\% of Mix	Average CPI
ALU	47%	6.7
Load	19%	7.9
Branch	20%	5.0
Store	14%	7.1

The clock rate for this machine is 1 GHz .
You want to improve the performance of this machine, and are considering redesigning your multiplier to reduce the average CPI of multiply instructions. (Digress - why do multiplies take longer than adds?) If you make this change, the CPI of multiply instructions would drop to 6 (from 8). The percentage of ALU instructions that are multiply instructions is 23%. How much will performance improve by?

First, need to calculate a basis for comparison:

- Let the number of instructions = I
- (We're only changing the HW, not the code so the number of instructions per program will remain constant.)

Then, the CPI for this instruction mix is:

$$
\begin{aligned}
\text { CPI }_{\text {avg }} & =(0.47)(6.7)+(.19)(7.9)+(.2)(5)+(.14)(7.1) \\
& =3.15+1.5+1+1 \\
& =6.65 \\
& \\
& \\
\text { CPU Time }_{\text {(base) }} & \\
& =1 \times 6.65 \times\left(1 \times 10^{-9}\right) \\
& =6.65 \times 10^{-9}(\mathrm{I})
\end{aligned}
$$

Next...

- To evaluate the impact of the new multiplier, we need to calculate a new average CPI for ALU instructions

We know that the OLD ALU CPI is:

$\mathrm{CPI}_{\text {(ALU-old) }} \quad=\quad(0.23)$ (multiply) $+(0.77)$ (non-multiply)
$6.7=(0.23)(8)+(0.77)$ (non-multiply)
We can solve for (non-multiply) - which equals 6.31.
Now, we can calculate a new ALU CPI:
$\begin{aligned} \text { CPI }_{\text {(ALU-new) }} & = \\ & = \\ & =10.23) \text { (multiply) }+(0.77) \text { (non-multiply) } \\ & =6.24)(6)+(0.77)(6.31)\end{aligned}$

Finally... we can calculate a new CPI and CPU time:

```
CPI new 
    = 2.68+1.5+1+1
    = 6.41
CPU Time (new) = I N6.41 
    = 6.41 x 10-9(I)
```


Part E: Amdahl's Law Examples

Question 1:

Consider 4 potential applications of the Amdhal's Law Formula:

1. 95% of a task/program/etc. is improved by 10%
2. 5% of a task/program/etc. is improved by $\mathbf{1 0 X}$
3. 5% of a task/program/etc. is infinitely improved
4. 95% of a task/program/etc. is infinitely improved

For all 4 cases, what is the overall speedup of the task?
Recall Amdahl's Law Formula: \quad speedup $=\frac{1}{\left(1-f_{\text {enhanced }}\right)+\frac{f_{\text {enhanced }}}{\text { speedup }_{\text {enchanced }}}}$
Case 1:

$$
\text { speedup }=\frac{1}{(1-0.95)+\frac{0.95}{1.1}}=1.094
$$

- Here, there is a 9.4% speedup.
- Because the enhancement does not affect the whole program, we don't get 10% - but because it's widely applied, we get close.

Case 2:

$$
\text { speedup }=\frac{1}{(1-0.05)+\frac{0.05}{10}}=1.047
$$

- Here, there is a 4.7% speedup.
- Because the enhancement is limited in scope, there is limited improvement.

Case 3:

$$
\text { speedup }=\frac{1}{(1-0.05)+\frac{0.05}{\infty}}=1.052
$$

- Here, there is a 5.2% speedup.
- Same as Case 3. Because the enhancement is limited in scope, there is limited improvement.

Case 4

$$
\text { speedup }=\frac{1}{(1-0.95)+\frac{0.95}{\infty}}=20
$$

- Only if enhancement almost everywhere do you see big speedup - and then only 20X!
- (If 1,000,000 - still see about 20X - therefore "lose" 50,000X of improvement)

Question 2:

Let's suppose that we have 2 design options to choose from:

1. We can make part of a task 20 X faster than it was before; this part of the task constitutes 10% of the overall task time.
2. We can make 85% of the task 1.2X faster.

Part A:

Which is better?
To answer, we need to calculate 2 parameters:

1. \% of task that will run faster / how much faster it will run
2. Part of task that will be the same as before

	(i)	(ii)	(i) + (ii)
Case 1	$0.1 / 20=0.005$	$(1-0.1)$	$.005+0.9=0.905$
Case 2	$0.85 / 1.2=0.708$	$(1-0.85)$	$0.708+0.15=0.858$
	Think of this column as the new component of execution time	This is the part of the task that takes the same as before.	

Can then divide normalized old execution time by the result to get speedup:
For Case 1: $\quad 1 / 0.905=1.105=10.5 \%$

For Case 2: $1 / 0.858=1.166=16.5 \%$
Therefore Case 2 is better - b/c it improves almost everything

Part B:
Question - how much / what \% of code must be sped up by 20X to match performance of Case 2?

$$
1.165=\frac{1}{\left(1-f_{\text {enhanced }}\right)+\frac{f_{\text {enhanced }}}{20}}
$$

If we solve for fraction enhanced , we get 0.149 - i.e. 14.9% of the code/task must run 20X faster instead of 10\%.

Part F: Lab Example

How do you use output from the SimpleScalar tool to calculate execution time?

sim_CPI	$\mathbf{1 . 4 1 9 6}$ \# cycles per instruction
sim_IPC	0.7044 \# instructions per cycle
sim_num_insn	$\mathbf{1 2 2 0 7 5 4}$ \# total number of instructions committed
sim_num_loads	316121 \# total number of loads committed
sim_num_stores	151151.0000 \# total number of stores committed
sim_num_branches	94135 \# total number of branches committed
dl1.accesses	477290 \# total number of accesses
dl1.hits	471924 \# total number of hits
dl1.misses	5366 \# total number of misses
dl1.miss_rate	0.0112 \# miss rate (i.e., misses/ref)
il1.accesses	1637165 \# total number of accesses
il1.hits	1636752 \# total number of hits
il1.misses	413 \# total number of misses
il1.miss_rate	0.0003 \# miss rate (i.e., misses/ref)

Can multiply number of instructions by CPI.

