
Lecture 05-06  
Motivation and Background of

MIPS Instruction Set Architecture
(ISA) 
"

Suggested reading:"
(HP Chapter 2.1-2.3 & 2.5-2.7)"

(do not need to read HP Chapter 2.4)"

1"

2"

Processor components"

vs."

Processor comparison"

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"

Fundamental lesson(s)"
•  Today I’ll explain what an ISA in a typical, modern

microprocessor looks like"
–  How memory references are handled / encoded, etc. in

the MIPS ISA (our example) are fairly representative of
others too (e.g. the ARM ISA)."

3"

Why it’s important…"
•  In this lecture, you'll get a very good sense as to what

kind of assembly code is generated when you compile
some HLL code"

•  Later in the semester, I'll show you what HLL code you
write can SIGNIFICANTLY impact its execution time"
–  Should already start to see this in lab"

•  To really take advantage of this, need to understand
how HLL code gets mapped to assembly code + how
assembly suggests how HW actually performs a
computation"

4"

5"

Quick recap"
•  Context"

–  Lecture 01:"
•  Introduction to the course"

–  Lectures 02-03:"
•  Introduction to programmable processors"

–  (6-instruction + some ARM ISA)"

–  Lecture 04 (and part of Lecture 05):"
•  How to quantify impact of design decisions"

–  Lecture 05: (MIPS ISA)"
•  Apply / revisit ideas introduced in Lectures 02, 03, but use

context of modern ISA"
•  Use benchmark techniques from Lecture 04 with this material

and throughout the rest of the course"

6"

•  Shortcomings of the simple processor"
–  Only 16 bits for data and instruction"
–  Data range can be too small"
–  Addressable memory is small"
–  Only “room” for 16 instruction opcodes"

•  MIPS ISA: 32-bit RISC processor"
–  A representative RISC ISA "

•  (RISC – Reduced Instruction Set Computer)"
–  A fixed-length, regularly encoded instruction set and

uses a load/store data model "
–  Used by NEC, Cisco, Silicon Graphics, Sony, Nintendo…"

•  …and more"

A more sophisticated ISA"

Most modern
microprocessors are
RISC-like including
ARMs"

7"

q MIPS processor:"
Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]"
"
" " " " " " " " " " "
" " " " " " " "(add: op+func)"

 "
"
"
Machine:"

6-instruction vs. MIPS"

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0
funct (6)

B: 000000 00111 01000 01001 xxxxx 100000
D: 0 7 8 9 x 32

q 6-instruction processor:"
Add instruction: 0010 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0"

Add Ra, Rb, Rc—specifies the operation RF[a]=RF[b] + RF[c]	

Instruction"Encoding"

8"

q A MIPS subtract"
Assembly: sub $9, $7, $8 # sub rd, rs, rt: RF[rd] = RF[rs]-RF[rt]"
"
" " " " " " " " " " "
""

"
"
"
Machine:"

6-instruction vs. MIPS"

op (6) rs (5) rt (5) rd (5) shamt (5) funct (6)

B: 000000 00111 01000 01001 xxxxx 100010
D: 0 7 8 9 x 34

31 26 25 21 20 16 15 11 10 6 5 0

q 6-instruction processor:"
Sub instruction: 0111 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0"

SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] – RF[c]	

Instruction"Encoding"

6-instruction vs. MIPS"

9"

Datapath"

Path of Add
from start
to finish."

10"

Path of Add
from start
to finish."

Datapath"6-instruction vs. MIPS"

Note:"

11"

We’ll discuss the specifics of the MIPS ISA in more
detail shortly…!

!
…but first, I’ll go through a few slides on how MIPS-

like (i.e. RISC) ISAs came to be.!

12"

Instructions Sets"
•  An instruction set specifies a processor’s functionality"

–  what operations it supports "
–  what storage mechanisms it has & how they are accessed "
–  how the programmer/compiler communicates programs to

processor "

•  ISA: “interface” between HLL and HW"

•  ISAs may have different syntax (6-instruction vs. MIPS),
but can still support same general types of operation
(i.e. register-register)"

13"

Instruction Set Architecture"
•  Instructions must have some basic functionality:"

–  Access memory (read and write)"
–  Perform ALU operations (add, multiply, etc.)"
–  Implement control flow (jump, branch, etc.)"

•  I.e. to take you back to the beginning of a loop"

•  Significant difference often how memory, data addressed"
–  Operand location"

•  (stack, memory, register)"
–  Addressing modes"

•  (computing memory addresses)"
–  (Let’s digress on the board and preview how MIPS does a load)"
–  (Compare to 6-instruction processor?)"

14"

What makes a good instruction set"
•  implementability "

–  supports a (performance/cost) range of implementations "
•  implies support for high performance implementations "

•  programmability "
–  easy to express programs (for human and/or compiler) "

•  backward/forward compatibility "
–  implementability & programmability across generations "

•  e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium
II, Pentium III, Pentium 4... "

15"

ht
tp

://
in

fo
ce

nt
er

.a
rm

.c
om

/h
el

p/
in

de
x.

js
p?

to
pi

c=
/c

om
.a

rm
.d

oc
.d

di
02

10
c/

in
de

x.
ht

m
l"

Introduction

ARM7TDMI Data Sheet
ARM DDI 0029E

1-5

O
p

e
n

 A
c
c
e
s
s

1.4 ARM7TDMI Core Diagram

 Figure 1-2: ARM7TDMI core

nRESET

nMREQ

SEQ

ABORT

nIRQ
nFIQ

nRW

LOCK
nCPI
CPA
CPB

nWAIT
MCLK

nOPC

nTRANS

Instruction
Decoder

&
Control
Logic

Instruction Pipeline
& Read Data Register

DBE D[31:0]

32-bit ALU

Barrel
Shifter

Address
Incrementer

Address Register

Register Bank
(31 x 32-bit registers)

(6 status registers)

A[31:0]

ALE

Multiplier

ABE

Write Data Register

nM[4:0]

32 x 8

nENOUT nENIN

TBE

Scan
Control

BREAKPTI

DBGRQI

nEXEC

DBGACK

ECLK

ISYNC

B

b
u
s

A
L
U

b
u
s

A

b
u
s

P
C

b
u
s

I
n
c
r
e
m
e
n
t
e
r

b
u
s

APE
BL[3:0]

MAS[1:0]

TBIT
HIGHZ

& Thumb Instruction Decoder

ARM and Thumb-2 Instruction Set
Quick Reference Card

Operation § Assembler S updates Action Notes
Multiply Multiply MUL{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0] (If Rm is Rd, S can be used in Thumb-2) N, S

and accumulate MLA{S} Rd, Rm, Rs, Rn N Z C* Rd := (Rn + (Rm * Rs))[31:0] S
and subtract T2 MLS Rd, Rm, Rs, Rn Rd := (Rn – (Rm * Rs))[31:0]
unsigned long UMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs) S
unsigned accumulate long UMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs) S
unsigned double accumulate long 6 UMAAL RdLo, RdHi, Rm, Rs RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)

Signed multiply long SMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs) S
and accumulate long SMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs) S
16 * 16 bit 5E SMULxy Rd, Rm, Rs Rd := Rm[x] * Rs[y]
32 * 16 bit 5E SMULWy Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16]
16 * 16 bit and accumulate 5E SMLAxy Rd, Rm, Rs, Rn Rd := Rn + Rm[x] * Rs[y] Q
32 * 16 bit and accumulate 5E SMLAWy Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs[y])[47:16] Q
16 * 16 bit and accumulate long 5E SMLALxy RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]

Dual signed multiply, add 6 SMUAD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q
and accumulate 6 SMLAD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q
and accumulate long 6 SMLALD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]

Dual signed multiply, subtract 6 SMUSD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q
and accumulate 6 SMLSD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q
and accumulate long 6 SMLSLD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]

Signed top word multiply 6 SMMUL{R} Rd, Rm, Rs Rd := (Rm * Rs)[63:32]
and accumulate 6 SMMLA{R} Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs)[63:32]
and subtract 6 SMMLS{R} Rd, Rm, Rs, Rn Rd := Rn – (Rm * Rs)[63:32]

with internal 40-bit accumulate XS MIA Ac, Rm, Rs Ac := Ac + Rm * Rs
packed halfword XS MIAPH Ac, Rm, Rs Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]
halfword XS MIAxy Ac, Rm, Rs Ac := Ac + Rm[x] * Rs[y]

Divide Signed or Unsigned RM <op> Rd, Rn, Rm Rd := Rn / Rm <op> is !"#$ (signed) or %"#$ (unsigned)
Move
data

Move MOV{S} Rd, <Operand2> N Z C Rd := Operand2 See also Shift instructions N
NOT MVN{S} Rd, <Operand2> N Z C Rd := 0xFFFFFFFF EOR Operand2 N
top T2 MOVT Rd, #<imm16> Rd[31:16] := imm16, Rd[15:0] unaffected, imm16 range 0-65535
wide T2 MOV Rd, #<imm16> Rd[15:0] := imm16, Rd[31:16] = 0, imm16 range 0-65535
40-bit accumulator to register XS MRA RdLo, RdHi, Ac RdLo := Ac[31:0], RdHi := Ac[39:32]
register to 40-bit accumulator XS MAR Ac, RdLo, RdHi Ac[31:0] := RdLo, Ac[39:32] := RdHi

Shift Arithmetic shift right ASR{S} Rd, Rm, <Rs|sh> N Z C Rd := ASR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ASR <Rs|sh> N
Logical shift left LSL{S} Rd, Rm, <Rs|sh> N Z C Rd := LSL(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSL <Rs|sh> N
Logical shift right LSR{S} Rd, Rm, <Rs|sh> N Z C Rd := LSR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSR <Rs|sh> N
Rotate right ROR{S} Rd, Rm, <Rs|sh> N Z C Rd := ROR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ROR <Rs|sh> N
Rotate right with extend RRX{S} Rd, Rm N Z C Rd := RRX(Rm) Same as MOV{S} Rd, Rm, RRX

Count leading zeros 5 CLZ Rd, Rm Rd := number of leading zeros in Rm
Compare Compare CMP Rn, <Operand2> N Z C V Update CPSR flags on Rn – Operand2 N

negative CMN Rn, <Operand2> N Z C V Update CPSR flags on Rn + Operand2 N
Logical Test TST Rn, <Operand2> N Z C Update CPSR flags on Rn AND Operand2 N

Test equivalence TEQ Rn, <Operand2> N Z C Update CPSR flags on Rn EOR Operand2
AND AND{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND Operand2 N
EOR EOR{S} Rd, Rn, <Operand2> N Z C Rd := Rn EOR Operand2 N
ORR ORR{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR Operand2 N
ORN T2 ORN{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR NOT Operand2 T
Bit Clear BIC{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND NOT Operand2 N

32-bit ARM
not unlike
32-bit MIPS"

MIPS: Mul $9, $7, $8 # mul rd, rs, rt: RF[rd] = RF[rs]*RF[rt]"

http://www.arm.com/images/armpp/nook2_%281%29.jpg"http://www.arm.com/images/pro-A7TDMI-s.gif"

http://www.arm.com/products/processors/technologies/instruction-set-architectures.php"

Simplified (16-bit) ARMs available too"

Example: range of cost implementations"

16"

Programmability"
•  a history of programmability "

–  pre - 1975: most code was hand-assembled "
–  1975 – 1985: most code was compiled "

•  but people thought that hand-assembled code was superior "
–  1985 – present: most code was compiled "

•  and compiled code was at least as good as hand-assembly "

over time, a big shift in what “programmability” means"

“Programming”
literally sitting

down and
writing machine

code"

17"

pre-1975: Human Programmability"
•  focus: instruction sets that were easy for humans to

program"
–  ISA semantically close to high-level language (HLL) "

•  closing the “semantic gap” "
–  semantically heavy complex instructions "

•  e.g., the VAX had instructions for polynomial evaluation "
–  people thought computers would someday execute HLL

directly "
•  never materialized "

Let’s look at
an example"

The Quadratic Forumla"

18"

Provides primitives, not solutions!

€

x =
−b ± b 2 −4ac

2a
Approach 1:" Approach 2:"

Mult R1, b, b"
Mult R2, a, c"
Multi R2, R2, 4"
Sub R3 R1, R2"
Sqrt R3, R3"
Mult, R4, a, 2"
Mult R5, b, -1"
Add R6, R5, R3"
Div R6, R6, R4 "# result 1"
Sub R7, R5, R3"
Div R7, R7, R4 "# result 2"

QUAD_Plus X1, a, b, c"
QUAD_Minus X2, a, b, c"

QUAD X1, X2, a, b, c"

or"

Generally requires more specialized HW!

A"

19"

Storage Model: Register-Register (Ld/St)"
 load R1,A R1 = M[A]; !

 load R2,B R2 = M[B]; !

 add R3,R1,R2 R3 = R1 + R2; !

 store C,R3 M[C] = R3; "

–  load/store architecture: ALU operations on regs only "
•  (minus) poor code density "
•  (plus) easy decoding, operand symmetry "
•  (plus) deterministic length ALU operations "
•  (plus) fast decoding helps pipelining (later)"

–  1960’s and onwards "
•  RISC machines: Alpha, MIPS, PowerPC, ARM"

Again, typical of a modern ISA
and the focus in this course…"

20"

Instruction Formats"
•  fixed length (most common: 32-bits) "

–  (plus) easy for pipelining (e.g. overlap) and for multiple
issue (superscalar)"

•  don’t have to decode current instruction to find next instruction "
–  (minus) not compact"

•  Does the MIPS add “waste” bits? "

•  variable length "
–  (plus) more compact "
–  (minus) hard (but do-able) to efficiently decode"

•  (important later)"

Operation" Address"
Field 1"

Address"
Field 2"

Address"
Field 3"

Operation &"
of operands" …."Address"

Specifier 1"
Address"
Field 1"

Address"
Specifier n"

Address"
Field n"

21"

Present Day: Compiled Assembly"
Consider a representative set of passes"

Front end language specific"

Function:" Dependencies:"
Transform HLL to common,
intermediate form"

Language dependent,
machine independent"

High-level optimizations"
(things any HLL code might benefit from)"

Representative examples:"
Procedure in-lining, loop
transformations, etc."

Somewhat language
dependent, largely machine
independent"

Global optimizer"Representative example:"
Register allocation"

Small language dependencies,
some machine dependencies
(i.e. register counts)"

Code generator"
Detailed instruction selection
and machine-dependent
optimizations"

Highly machine dependent,
language independent"

NOW: INTRODUCTION TO MIPS ISA"

More specifics about:"
MIPS instruction syntax"
Register usage"
"

22"

23"

MIPS registers"
q  32x32-bit GPRs (General purpose registers)"

n  $0 = $zero (therefore only 31 GPRs)"

n  $1 = $at (reserved for assembler)"

n  $2 - $3 = $v0 - $v1 (return values)"
n  $4 - $7 = $a0 - $a3 (arguments)"

n  $8 - $15 = $t0 - $t7 (temporaries)"
n  $16 - $23 = $s0 - $s7 (saved)"
n  $24 - $25 = $t8 - $t9 (more temporaries)"

n  $26 - $27 = $k0 - $k1 (reserved for OS)"

n  $28 = $gp (global pointer)"
n  $29 = $sp (stack pointer)"
n  $30 = $fp (frame pointer)"
n  $31 = $ra (return address)"

r0
r1

r31 b0 bn-1 ...

...

32 bits

0

PC

•  32x32-bit floating point
 registers (paired double precision)
•  Program counter
•  Status, Cause, BadVAddr, EPC

Let’s think ahead a bit..."

24"

Board digression"
•  Programmer visibility"
•  Procedure calls"

B"

25"

Memory Organization"
q Addressable unit: "

n smallest number of consecutive
bits (word length) can be
accessed in a single operation"

n Example, n=8, byte addressable"

0
1

i

2k-1

b0 bn-1 ...

...

...

n bits Addr

C"

26"

MIPS: Most data items are contained in words,a word is
32 bits or 4 bytes. Registers hold 32 bits of data

p  232 bytes with byte addresses from 0 to 232-1
p  230 words with byte addresses 0, 4, 8, ... 232-4
p  Words are aligned
p  What are the least 2 significant bits of a word address?

Effect of Byte Addressing"

D"

Word 0" Byte 0011" Byte 0010" Byte 0001" Byte 0000"
Word 1" Byte 0111" Byte 0110" Byte 0101" Byte 0100"
Word 2" Byte 1011" Byte 1010" Byte 1001" Byte 1000"
Word 3" Byte 1111" Byte 1110" Byte 1101" Byte 1100"

Address of this byte is 1010 (or 9 in base 10)"

Assume PC=0,
want to read word
of data (4 bytes)"

To get next data
word, need to
increment PC by 4."

27"

A View from 10 Feet Above"
•  Instructions are characterized into basic types"
•  With each type, 32 bits of instruction encoding are

interpreted differently…"
–  Generally a good idea not to have too many types."

•  Why?"
•  3 types of instructions:"

–  R type"
–  I type"
–  J type"

•  Look at both assembly and machine code"

28"

q R-type: All operands are in registers"

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]"
"
" " " " " " " " " " "
" " " " " " " "(add: op+func)"

 "
"
"
Machine:"

B: 000000 00111 01000 01001 xxxxx 100000
D: 0 7 8 9 x 32

R-Type: Assembly and Machine Format"

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0
funct (6)

29"

q All instructions have 3 operands"
q All operands must be registers"
q Operand order is fixed (destination first)"
q  Example: 
 
"C code: "A = B - C;

" " (Assume that A, B, C are stored in registers s0, s1, s2.)"
 

"MIPS code: " sub $s0, $s1, $s2 "
  

"Machine code: 000000 10001 10010 10000 xxxxx 100010"

q Other R-type instructions"
n addu, mult, and, or, sll, srl, …"

R-type Instructions"

30"

I-type: one of two source operands is an “immediate value”

 and the other is in a register; destination = a register

 Example: addi $s2, $s1, 128 # addi rt, rs, Imm
 # RF[18] = RF[17]+128

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions – example 1"

B: 001000 10001 10010 0000000010000000
D: 8 17 18 128

31"

I-type: one of two source operands is an “immediate value”

 and the other is in a register; destination = a register

 Example: lw $s3, 32($t0) # RF[19] = DM[RF[8]+32]

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions – example 2"

B: 100011 01000 10011 0000000000100000
D: 35 8 19 32

How about load the next word in memory?"

32"

I-type: one of two source operands is an “immediate value”

 and the other is in a register; destination = a register

 Example: Again: bne $t0, $t1, Again

 # if (RF[8]!=RF[9]) PC=PC+4+Imm*4
 # else PC=PC+4

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions – example 3"

B: 00101 01000 01001 1111111111111111
D: 5 8 9 -1

PC-relative addressing

Can always just use label in
HW, labs, exams"

33"

J-type: only one operand: the target address"
"
 Example: j 3 # PC = (PC+4)[31:28]||Target||00 (Why “00”?)"
 "

Op (6) Target address (26)

31 26 25 0

B: 000010 00000000000000000000000011
D: 2 3

Pseudo-direct Addressing

J-Type Instructions"

Can always just use label in HW, labs, exams"

34"

•  MIPS is a Load/Store Architecture (a hallmark of RISC)"
–  Only load/store type instructions can access memory"

•  Example: "A = B + C;"
–  Assume: A, B, C are stored in memory, $s2, $s3, and $s4

contain the addresses of A, B and C, respectively."
•  lw $t0, 0($s3)"

–  RF[8]=DM[RF[19]]"
•  lw $t1, 0($s4)"

–  RF[9]=DM[RF[20]]"
•  add $t2, $t0, $t1"

–  # RF[10]=RF[8]+RF[9]"
•  sw $t2, 0($s2)"

–  DM[RF[18]]=RF[10]"

•  sw has destination last"
•  What is the instruction type of sw?"

Example: Memory Access Instructions"

Take note of ordering…"
different than 6-insturction
processor example"

35"

Summary of MIPS Instruction Formats"
All MIPS instructions are 32 bits (4 bytes) long."
R-type:"

I-Type:"

J-type"

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0
funct (6)

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

Op (6) Target address (26)

31 26 25 0

36"

More on MIPS ISA"
•  How to get constants into the registers?"

–  Zero used very frequently => $0 is hardwired to zero"
•  if used as an argument, zero is passed"
•  if used as a target, the result is destroyed"

–  Small constants are used frequently (~50% of operands)  
 A = A + 5; (addi $t0, $t0, 5) ""

n  " slti $8, $18, 10 ""
 " " andi $29, $29, 6"
 " " ori $29, $29, 4"

–  What about larger constants?"

More Discussion & Examples"

37"

E"

