Lecture 05-06
Motivation and Background of
MIPS Instruction Set Architecture

(ISA)

Suggested reading:
(HP Chapter 2.1-2.3 & 2.5-2.7)
(do not need to read HP Chapter 2.4)

for i=0; i<5; i++ {‘\
a = (a*b) + c;
}

MULT r1,r2,r3 #r1 < r2*r3
ADD r2,r1,r4 ‘1, #r2 € ri+rd

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100

__ S X y

HLL code translation

Fundamental lesson(s)

- Today I'll explain what an ISA in a typical, modern
microprocessor looks like
— How memory references are handled / encoded, etc. in

the MIPS ISA (our example) are fairly representative of
others too (e.g. the ARM ISA).

Why it’s important...

* In this lecture, you'll get a very good sense as to what
kind of assembly code is generated when you compile
some HLL code

- Later in the semester, I'll show you what HLL code you
write can SIGNIFICANTLY impact its execution time

— Should already start to see this in lab

- To really take advantage of this, need to understand
how HLL code gets mapped to assembly code + how
assembly suggests how HW actually performs a
computation

Quick recap

« Context

— Lecture 01:
* Introduction to the course

— Lectures 02-03:
- Introduction to programmable processors
— (6-instruction + some ARM ISA)
— Lecture 04 (and part of Lecture 05):
- How to quantify impact of design decisions

— Lecture 05: (MIPS ISA)

- Apply / revisit ideas introduced in Lectures 02, 03, but use
context of modern ISA

- Use benchmark techniques from Lecture 04 with this material
and throughout the rest of the course

A more sophisticated ISA

- Shortcomings of the simple processor
— Only 16 bits for data and instruction

— Data range can be too small
— Addressable memory is small
— Only “room” for 16 instruction opcodes

Most modern
microprocessors are

- MIPS ISA: 32-bit RISC processor RSOk neluding

— A representative RISC ISA ARMs
« (RISC — Reduced Instruction Set Computer)

— A fixed-length, regularly encoded instruction set and
uses a load/store data model

— Used by NEC, Cisco, Silicon Graphics, Sony, Nintendo...

* ...and more

. : TP E—
6-instruction vs. MIPS £ iruction

Ncoding

1 6-instruction processor:
Add instruction: 0010 rasrazrairao rbsrbarbirbo rcsrcarcirco
Add Ra, Rb, Rc—specifies the operation RF[a]=RF[b] + RF[c]

O MIPS processor:
Assembly: add $9, $7 $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

a
......
LY *
... *
- *
.....
S
*'n
.......
L)
.......
......
» b

"
......

- ay
.....

....

* "
.......
.......
. e

‘e
*
*
‘e
.

e
.
“,
a
"a
tea,
a
L]
‘e Ya,
- ny
. a,
. oy
. ay
“a,

31 ¥ 2625 ¥ 2120 Y1615 * 1110 65 0

op (6) rs (5) ‘ rt (5) rd (5) shamt (5) | funct (6)
Machine:
B: 000000 00111 01000 01001 xxxxx 100000
D: 0 ! 38 9 X 32

. _ , :
6-instruction vs. MIPS £ iruction

Ncoding

1 6-instruction processor:
Sub instruction: 0111 rasrazrairao rbsrbarbirbo resrcarcirco
SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] — RF[c]

d A MIPS subtract
Assembly: sub $9, $7, $8 +# sub rd, rs, rt: RF[rd] = RF[rs]-RF[rt]

’.'"“".
3 ¥ 2625 § 2120 ¥ 1615.\"‘ 10 6 5 s 0
op (6) rs (5) ‘rt(S) rd (5) shamt (5) | funct (6)
Machine:
B: 000000 00111 01000 01001 xxxxx 100010
D: 0 V4 3 9 X 34

6-instruction vs. MIPS E’atapathj

Path of Add addr D
rd
from start w8
>W data R _data

to finish.

’ RF s1
g/RF_SO
v
’ 16
Controller
» Vv
»
RE Roadd(| a [|20 fF
~Ra.rd
116|Ro. data Rafdata
RF]
|GE.Rp.zero| — . *
M~ alu_s1 -1 A ALU B
~———_alu_s0 o SO P
Control unit Dataoath .16
s1 sO | ALU operation
0 0 | pass A through
0 1 A+B
1 0 | AB

6-instruction vs. MIPS

Path of Add
from start
to finish.

Instruction [15 -0]

16 32
\ @\

N lextend | N

Instruction [5-0]

»(0

M

u

\ X

ALU
>Add result >
>Add @ /
|
Instruction [31 -26]
struction [25 -21]
d
d
Instruction [20 -16]
cli
- M Write result Address Read 1
Instruction u register data M
memory Instruction [15 -11] | *
> 1 data Data s
| [wite ™™ | @
data

10

Note:

We’ll discuss the specifics of the MIPS ISA in more
detail shortly...

...but first, I'll go through a few slides on how MIPS-
like (i.e. RISC) ISAs came to be.

11

Instructions Sets

- An instruction set specifies a processor’s functionality
— what operations it supports
— what storage mechanisms it has & how they are accessed

— how the programmer/compiler communicates programs to
processor

« ISA: “interface” between HLL and HW

- ISAs may have different syntax (6-instruction vs. MIPS),
but can still support same general types of operation
(i.e. register-register)

12

Instruction Set Architecture

 Instructions must have some basic functionality:
— Access memory (read and write)
— Perform ALU operations (add, multiply, etc.)

— Implement control flow (jJump, branch, etc.)
- |l.e. to take you back to the beginning of a loop

- Significant difference often how memory, data addressed
— Operand location
- (stack, memory, register)

— Addressing modes

« (computing memory addresses)
— (Let’s digress on the board and preview how MIPS does a load)
— (Compare to 6-instruction processor?)

13

What makes a good instruction set

- implementability
— supports a (performance/cost) range of implementations
- implies support for high performance implementations

« programmability
— easy to express programs (for human and/or compiler)

- backward/forward compatibility

— Iimplementability & programmability across generations

- e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium
Il, Pentium lIl, Pentium 4...

14

Example: range of cost implementations

ARM and Thumb-2 Instruction Set
Quick Reference Card

32-bit ARM

not unlike

Operation §

Assembler

S updates

Action

Multiply ‘ Multiply

32-bit MIPS

MUL{S} Rd, Rm, Rs

N Z C*

MIPS: Mul $9, $7,$8 # mul rd, rs, rt: RF[rd] = RF[rs]*RF[rt]

Simplified (16-bit) ARMs available too

Improved Code Density with Performance and Power Efficiency

Thumb-2 technology is the instruction set underlying the ARM Cortex architecture which provides enhanced levels of
performance, energy efficiency, and code density for a wide range of embedded applications.

Thumb-2 technology builds on the success of Thumb, the innovative high code density instruction set for ARM
microprocessor cores, to increase the power of the ARM microprocessor core available to developers of low cost, high
performance systems.

The technology is backwards compatible with existing ARM and Thumb solutions, while significantly extending the features
available to the Thumb instructions set. This allows more of the application to benefit from the best in class code density of
Thumb.

For performance optimised code Thumb-2 technology uses 31 percent less memory to reduce system cost, while providing
up to 38 percent higher performance than existing high density code, which can be used to prolong battery-life or to enrich

the product feature set. Thumb-2 technology is featured in the processor, and in all ARMv7 architecture-based processors.

http://www.arm.com/products/processors/technologies/instruction-set-architectures.php

ARM7TDMI-S

http://www.arm.com/images/pro-A7TDMlI-s.gif http://www.arm.com/images/armpp/nook2_%281%29.jpg

O C o Cr >

jL

A[31:0]

AiE TT AiE lr

Address Register

ﬂ

P;

o

u
S

Register Bank
(31 x 32-bit registers)
(6 status registers)

32x8
Al Multiplier

; 32-bit ALU /

C
Address
Incrementer

1=

Co —“0~S503003]

| E—

Scan
Control

Instruction
Decoder
&
Control
Logic

l— DBGRQI
le— BREAKPTI
I DBGACK
- ECLK
> nEXEC
le— ISYNC
le BL[3:0]
le— APE

le— MCLK
le— nWAIT
- nRW

- MAS[1:0]
le— nIRQ

le— nFIQ

l— NRESET
l— ABORT
- NnTRANS
- nMREQ
- nOPC
— SEQ

I LOCK
— nCPI
le— CPA

le— CPB

> nM[4:0]
le— TBE

- TBIT

> HIGHZ

{r

1T

it

Write Data Register

Instruction Pipeline
& Read Data Register
& Thumb Instruction Decoder

nENOUT | nENIN

DBE

l

{

o]

B

Rd 7= (Rm * Rs)[31:0]

/com.arm.doc.ddi0210c/index.html

http://infocenter.arm.com/help/index.jsp?topic

15

Programmability Programming”

literally sitting

- a history of programmability down and
writing machine
— pre - 1975: most code was hand-assembled code

— 1975 - 1985: most code was compiled
- but people thought that hand-assembled code was superior

— 1985 — present: most code was compiled
- and compiled code was at least as good as hand-assembly

over time, a big shift in what “programmability” means

16

pre-1975: Human Programmability

- focus: instruction sets that were easy for humans to
program
— ISA semantically close to high-level language (HLL)
- closing the “semantic gap”

— semantically heavy complex instructions
- e.g., the VAX had instructions for polynomial evaluation

— people thought computers would someday execute HLL
directly

PY n eve r m ate r i al ized VAX is a 32-bit computing architecture that supports an orthogonal instruction
set (machine language) and virtual addressing (i.e. demand paged virtua
memory). It was developed in the mid-1970s by Digital Equipment

Corporation (DEC). DEC was later purchased by Compag, which in turn was
purchased by Hewlett-Packard.

The VAX has been perceived as the quintessential CISC processing
architecture, with its very large number of addressing modes and machine
instructions, including instructions for such complex operations as queue
insertion/deletion and polynomial evaluation [#¥sties seeded

Manufacturer: Digital Equipment Corporation

Byte size: 8 bits (octet)

Let ,S I Oo k at Address bus size: |32 bits

Peripheral bus: Unibus, Massbus, Q-Bus, XMI, VAXBI

a n exa m p Ie Architecture: CISC, virtual memory

Operating systems: VAX/VMS, Ultrix, BSD UNIX

17

The Quadratic Forumlia

- —bt\/b2 —4ac

2a
Approach 1: Approach 2:

QUAD Plus X1,a, b, c Mult R1, b, b

QUAD_Minus X2, a, b, c Mult R2, a, c
Multi R2, R2, 4

or Sub R3 R1, R2

Sqgrt R3, R3

QUAD X1, X2,a,b, c Mult, R4, a, 2
Mult R5, b, -1
Add R6, R5, R3
Div R6, R6, R4 # result 1
Sub R7, R5, R3
Div R7, R7, R4 # result 2

Generally requires more specialized HW Provides primitives, not solutions
18

X

Storage Model: Register-Register (Ld/St)

load R1,A Rl = M[A]; Again, typical of a modern ISA
load R2,B R2 = M[B]; and the focus in this course...
add R3,R1,R2 R3 = R1l + R2;

store C,R3 M[C] = R3;

— load/store architecture: ALU operations on regs only
« (minus) poor code density
* (plus) easy decoding, operand symmetry
* (plus) deterministic length ALU operations
- (plus) fast decoding helps pipelining (later)
— 1960’s and onwards
- RISC machines: Alpha, MIPS, PowerPC, ARM

19

Instruction Formats

- fixed length (most common: 32-bits)

— (plus) easy for pipelining (e.g. overlap) and for multiple
iIssue (superscalar)

 don’t have to decode current instruction to find next instruction

— (minus) not compact
« Does the MIPS add “waste” bits?

- variable length
— (plus) more compact

— (minus) hard (but do-able) to efficiently decode
 (important later)

Operation & Address Address Address Address
of operands |Specifier 1 |Field 1 wmEE Specifier n | Field n

Present Day: Compiled Assembly
—~

Consider a representative set of passes
Function:] Dependencies:

Transform HLL to common, L Language dependent,
intermediate form Front end Ianlguage SpeCIfIC machine independent

ransaurs mining oon_High-level optimizations — JoRewts BOuen L
9, 100p (things any HLL code might benefit from) P , argely

transformations, etc. 1 independent
Small language dependencies,

Global optimizer some machine dependencies

(i.e. register counts)
Detailed instruction selection 1 Highly machine dependent
and machine-dependent Code generator language independent |
optimizations

Representative example:
Register allocation

21

More specifics about:
MIPS instruction syntax
Register usage

NOW: INTRODUCTION TO MIPS ISA

22

MIPS registers

0 32x32-bit GPRs (General purpose registers) 32 bits
B $0 = $zero (therefore only 31 GPRs) o 0
rq
B $1 = $at (reserved for assembler)
H $2 - $3 =$vO0 - $v1 (return values)
B $4 - $7 = $a0 - $a3 (arguments) rs (b, .- by
m $8 - $15 = $t0 - $t7 (temporaries) PC

H $16 - $23 = $s0 - $s7 (saved)
H $24 - $25 = $i8 - $t9 (more temporaries)

H $26 - $27 = $k0 - $k1 (reserved for OS)

H $28 = $gp (global pointer) » 32x32-bit floating point

] reqgisters (paired double precision
H $29 = $sp (stack pointer) . Prgogram E:%unter P)

m $30 = $fp (frame pointer) . Status, Cause, BadVAddr, EPC

B $31 = $ra (return address) L et’s think ahead a bit...
23

Board digression

Programmer visibility
Procedure calls

Memory Organization

J Addressable unit: Addr n bits

B smallest number of consecutive
bits (word length) can be
accessed in a single operation

B Example, n=8, byte addressable

i b, .. b,

2k-1

Effect of Byte Addressing

MIPS: Most data items are contained in words,a word is
32 bits or 4 bytes. Registers hold 32 bits of data

Assume PC=0,
Word 0 Byte 0011 | Byte 0010 | Byte 0001 | Byte 0000 |<— want to read word
Word1 |Byle 0111 |Byle0110 |Byte 0101 |Byle0100 |x of data (4 bytes)
Word 2 Byte 1011 | Byte 1010 | Byte 1001, | Byte 1000 To get next data
Word 3 Byte 1111 | Byte 1110 | Byte 1101 || Byte 1100 word, need to

increment PC by 4.

Address of this byte is 1010 (or 9 in base 10)

O 232 bytes with byte addresses from 0 to 232-1

O 23° words with byte addresses 0, 4, 8, ... 232-4

0 Words are alighed

[0 What are the least 2 significant bits of a word address?

A View from 10 Feet Above

- Instructions are characterized into basic types

- With each type, 32 bits of instruction encoding are
interpreted differently...

— Generally a good idea not to have too many types.
« Why?
- 3 types of instructions:
— R type
— | type
— J type
- Look at both assembly and machine code

27

R-Type: Assembly and Machine Format

1 R-type: All operands are in registers

Assembly: add $9, $7 $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

tay
"
"a
.....
a
a
L]

e
o
oLl
u
“u
u
"
a
a
"
"
"a
]
.
e
b}
.
e
L]
......
"a
......
a
a
"
"
"a
"a
.
.
.
.
e
"
a
b
"a
L]

31 > 26 25 g 2120 7 1615 1110 65 " 0

op (6) rs (5) rt (5) rd (5) shamt (5) | funct (6)

Machine:
B: 000000 00111 01000 01001 xxxxx 100000
D: 0 ! 8 9 X 32

28

R-type Instructions

O All instructions have 3 operands

 All operands must be registers
 Operand order is fixed (destination first)
J Example:

C code: A =B - C;
(Assume that A, B, C are stored in registers s0, s1, s2.)

MIPS code: sub $s0, $s1, $s2

Machine code:

O Other R-type instructions
B addu, mult, and, or, sll, sri, ...

29

I-Type Instructions — example 1

I-type: one of two source operands is an “immediate value”
and the other is In a register; destination = a register

Example: addi $s2, $s1, 128 # addi rt, rs, Imm
RF[18] = RF[17]+128

31 ¥ 2625 7 21204 1615 4 0
Op (6) rs (5) I rt (5) I Address/Immediate value (16)

B: 001000 10001 10010 0000000010000000
D: 8 17 18 128

30

I-Type Instructions — example 2

I-type: one of two source operands is an “immediate value”
and the other is in a register; destination = a register

.
‘e o
Y ot
3¢

.
* ‘e
o ‘e
* -
‘e
o ‘e
LS .
. .
. LR
o *
G
G
G
.
L2
..
G

o*
o*
*

31 ¥ 2625, 2120 1615 - 0

A
Op (6) rs (5) rt (5) I Address/Immediate value (16)

B: 100011 01000 10011 0000000000100000
D: 35 8 19 32

How about load the next word in memory?

31

I-Type Instructions — example 3

I-type: one of two source operands is an “immediate value”
and the other is in a register; destination = a register

Example: Again: bne $t0 $t1 Again Canalways just use label in
HW, labs, exams

. # else PC=PC+4
31 72625 21 20" 1615 0

Op (6) rs (5) ‘ rt (5) I Address/Immediate value (16)

“““““““ # if (RF[8]'=RF[9]) PC=PC+4+Imm*4

B: 00101 01000 01001 1111111111111111
D: 5 8 9 -1

PC-relative addressing

J-Type Instructions

J-type: only one operand: the target address

31,2625

o*
.
.
.
.
.
R
.

0

Op (6)

Target address (26)

B: 000010 00000000000000000000000011

D:

2

3

Pseudo-direct Addressing

33

Example: Memory Access Instructions

 lw $t1, 0($s4)
- add $t2, $t0, $t1

- sw $t2, 0($s2) =

MIPS is a Load/Store Architecture (a hallmark of RISC)
— Only load/store type instructions can access memory
Example: A=B +C;

— Assume: A, B, C are stored in memory, $s2, $s3, and $s4
contain the addresses of A, B and C, respectively.

 lw $t0, 0($s3) +

"
e
e
.....
e
a
"

" Take note of ordering...

— RF[9]=DM[RF[201]] different than 6-insturction
processor example

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Y
.
.
.
o*
.

*
.
.
*
*

— DM[RF[18]]=RF[10]

sw has destination last

- What is the instruction type of sw?

34

Summary of MIPS Instruction Formats

All MIPS instructions are 32 bits (4 bytes) long.

R-type:
31 26 25 2120 1615 1110 65 0
op(6) | rs(5) I rt(5) | rd(5) |shamt(5) |funct(6)
I-Type:
31 26 25 2120 1615 0
Op (6) rs (5) I rt (5) ‘ Address/Immediate value (16)
J-type
31 26 25 0
Op (6) I Target address (26)

35

More on MIPS ISA

- How to get constants into the registers?

— Zero used very frequently => $0 is hardwired to zero
- if used as an argument, zero is passed
- if used as a target, the result is destroyed

— Small constants are used frequently (~50% of operands)
A=A+5; (addi $t0, $t0, 5)

slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

— What about larger constants?

36

More Discussion & Examples

37

