
CSE 30321 – Lecture 07-09 – In Class Example Handout

Part A: A Simple, MIPS-based Procedure:

Swap Procedure Example:
Let’s write the MIPS code for the following statement (and function call):

if (A[i] > A [i+1]) // $s0 = A
swap (&A[i], &A[i+1]) // $t0 = 4*i

We will assume that:

- The address of A is contained in $s0 ($16)
- The index (4 x i) will be contained in $t0 ($8)

Answer:

The Caller:
 …
 // Calculate address of A(i)
 add $s1, $s0, $t0 // $s1  address of array element i in $s1

 // Load data
 lw $t2, 0($s1) // load A(i) into temporary register $t2
 lw $t3, 4($s1) // load A(i+1) into temporary register $t3

 // Check condition
 ble $t2, $t3, else // is A(i) <= A(i+1)? If so, don’t swap

 // if >, fall through to here…
 addi $a0, $t0, 0 // load address of x into argument register (i.e. A(i))
 addi $a1, $t0, 4 // load address of y into argument register (i.e. A(i+1))

 // Call Swap function
 jal swap // PC  address of swap; $ra | $31 = PC + 4
else:

// Note that swap is “generic” – i.e. b/c of the way data is passed in, we do not assume the values
// to be swapped are in contiguous memory locations – so two distinct physical addresses are
// passed in

Swap:
 lw $t0, 0($a0) // $t0 = mem(x) – use temporary register
 lw $t1 0($a1) // $t1 = mem(y) – use temporary register
 sw 0($a0), $t1 // do swap
 sw 0($a1), $t0 // do swap
 jr $ra // $ra should have PC = PC + 4
 // PC = PC + 4 should be the next address after jump to swap

Part B: Procedures with Callee Saving (old exam question):
Assume that you have written the following C code:

//---
int variable1 = 10; // global variable
int variable2 = 20; // global variable
//---
int main(void) {
 int i = 1; // assigned to register s0
 int j = 2; // assigned to register s1
 int k = 3; // assigned to register a3
 int m;
 int n;

 m = addFourNumbers(i, j);

 n = i + j; // 1 + 2 = 3

 printf(“m is %d\n”, m); // printf modifies no registers
 printf(“n is %d\n”, n); // printf modifies no registers
 printf(“k is %d\n”, k); // printf modifies no registers
}
//---
int addFourNumbers(int x, int y) {
 int i; // assigned to register s0
 int j; // assigned to register s1
 int k; // assigned to register s2

 i = x + y; // 1 + 2 = 3
 j = variable1 + variable2; // 10 + 20 = 30
 k = i + j; // 3 + 30 = 33

 return k;
}
//---

The output of the printf statements in main is: m is 33
 n is 3
 k is 3

Assume this program was compiled into MIPS assembly language with the register conventions
described on Slide 12 of Lecture 07/08. Also, note that in the comments of the program, I have
indicated that certain variables will be assigned to certain registers when this program is compiled and
assembled. Using a callee calling convention, answer the questions below:

Q-i: Ideally, how many arguments to the function addFourNumbers must be
 saved on the stack?

0. By default, arguments should be copied into registers.

Q-ii: What (if anything) should the assembly language for main() do right
 before calling addFourNumbers?

Copy values of s registers into argument registers; save value of k (in $a3) onto the stack

Q-iii: What is the first thing that the assembly language for addFourNumbers
 should do upon entry into the function call?

Callee save the s registers

Q-iv: What is the value of register number 2 (i.e. 00102) after main completes
 (assuming there were no other function calls, no interrupts, no context
 switches, etc.)

33. Register 2 = v0. It should not have changed.
(different answer if you assume printf returns value)

Q-v: Does the return address register ($ra) need to be saved on the stack
 for this program? Justify your answer. (Assume main() does not return).

No – if no other procedures are called.

Part C: Procedures with Callee Saving (old exam question):
Assume you have the following C code:

int main(void) {
 int x = 10; # x maps to $s1
 int y = 20; # y maps to $s2
 int z = 30; # z maps to $s3

 int a; # a maps to $t0

int b; # b maps to $t1
int c; # c maps to $t2

 c = x + y;

 a = multiply(x, z);

 b = c + x;
}

int multiply(int a, int b) {
 int q; # q maps to $t0
 int z; # z maps to $t1

 q = add();
 z = a*b;

 return z;
}

int add() {
 int m = 5; # m maps to $t4
 int n = 4; # n maps to $t5
 int y;
 y = a + b;
 return y;
}

Assuming the MIPS calling convention, answer questions A-E. Note – no assembly code/machine
instructions are required in your answers; simple explanations are sufficient.

■

▲

Q-i: What, if anything must main() do before calling multiply?

- Save $t2 to stack, needed upon return.
- Also, copy $s1 to $a0 and copy $s3 to $a1

Q-ii: Does multiply need to save anything to the stack? If so, what?

- $31
- The s registers associated with main()
- The argument registers passed into multiply before calling add()

Q-iii: Assume that multiply returns its value to main() per the MIPS register convention. What

machine instructions might we see at ▲ to completely facilitate the function return?

- We have to copy the value in $t1 to $2.
- We would call a jal instruction
- We would adjust the stack pointer, restored saved registers.

Q-iv: What line of code should the return address register point to at ▲?

- b = c + x

Other answers were considered correct based on stated assumptions.

Q-v: What line of code should the return address register point to at ■?

- b = c + x

Other answers were considered correct based on stated assumptions.

Part D: More Complex Example:
Let’s write the MIPS code for the following:

for(i=1; i<5; i++) { int function(int, int) { Assume:
 A(i) = B*d(i); A(i) = A(i-1); Addr. of A = $18
 if(d(i) >= e) { e = A(i); Addr. of d = $19
 e = function(A,i); return e; B = $20
 } } e = $21
}

 (We pass in starting “address of A” and “i”)

Question/Comment My Solution Comment
1st, want to initialize
loop variables. What
registers should we
use, how should we
do it?

addi $16, $0, 1
addi $17, $0, 5

Initialize i to 1
Initialize $17 to 5

(in both cases, saved registers are used – we
want this data available post function call)

2nd, calculate address
of d(i) and load. What
kind of registers
should we use?

Loop: sll $8, $16, 2
 add $8, $19, $8
 lw $9, 0($8)

store i*4 in $8 (temp register OK)
add start of d to i*4 to get address of d(i)
load d(i)  needs to be in register to do math

Calculate B*d(i)

mult $10, $9, $20 # store result in temp to write back to memory

Calculate address of
A(i)

sll $11, $16, 2
add $11, $11, $18

CANNOT do:
add $11, $8, $18

Same as above

We overwrote
But, would have been better to save i*4
 Why? Lower CPI

Store result into A(i)

sw $10, 0($11) # Store result into a(i)

Now, need to check
whether or not d(i) >=
e. How? Assume no
ble.

slt $1, $9, $22

bne $0, $1, start again

Check if $9 < $22 (i.e. d(i) < e)
Still OK to use $9  not overwritten
(temp does not mean goes away immediately)

if d(i) < e, $1 = 1
if d(i) >= e, $1 = 0 (and we want to call function)
(if $1 != 0, do not want to call function)

Given the above
setup, what comes
next? (Falls through to
the next function call).
Assume argument
registers, what setup
code is needed?

 add $4, $18, $0
 add $5, $16, $0
x: jal function

load address of (A) into an argument register
load i into an argument register
call function; $31  x + 4 (if x = PC of jal)

Finish rest of code:
What to do? Copy
return value to $21.
Update counter, check
counter. Where is
“start again” at?

 add $21, $0, $2
sa: addi $16, $16, 1
 bne $16, $17, loop

returned value reassigned to $21
update i by 1 (array index)
if i < 5, loop

A better way:
Could make array index multiple of 4

Function Code
Assume you will
reference A(i-1) with lw
… 0($x). What 4
instruction sequence
is required?

func: subi $5, $5, 1
 sll $8, $5, $2
 add $9, $4, $8
 lw $10, 0($9)

subtract 1 from i
multiply i by 4  note
add start of address to (i-1)
load A(i-1)

Finish up function.

sw $10, 4($9)
add $2, $10, $0

store A(i-1) in A(i)
put A(i-1) into return register ($2)

Return

jr $31 # PC = contents of $31

