CSE 30321 — Lecture 07-09 — In Class Example Handout

Part A: A Simple, MIPS-based Procedure:

Swap Procedure Example:

Let’s write the MIPS code for the following statement (and function call):

if (A[i] > A [i+1]) //$s0 = A

swap (&A[i], &A[i+1]) // $t0 = 4%

We will assume that:

The address of A is contained in $s0 ($16)
The index (4 x i) will be contained in $t0 ($8)

Answer:
The Caller:
// Calculate address of A(i)
add $s1, $s0, $t0 /I $s1 € address of array element i in $s1
// Load data
Iw $t2, 0($s1) /l'load A(i) into temporary register $t2
Iw $t3, 4($s1) //'load A(i+1) into temporary register $t3
// Check condition
ble $t2, $t3, else /l'is A(i) <= A(i+1)? If so, don’t swap
// if >, fall through to here...
addi $a0, $t0, 0 /l'load address of x into argument register (i.e. A(i))
addi $at, $t0, 4 //'load address of y into argument register (i.e. A(i+1))
// Call Swap function
jal swap /I PC €< address of swap; $ra | $31 = PC + 4
else:
/4 Note that swap is “generic” — i.e. b/c of the way data is passed in, we do not assume the values
/4 fo be swapped are in contiguous memory locations — so two distinct physical addresses are
V4 passed in
Swap:

lw $t0, 0($a0) /I $t0 = mem(x) — use temporary register
lw $t1 0($al) /I $t1 = mem(y) — use temporary register
sw 0($a0), $t1 /l do swap

sw 0($a1), $t0 /l do swap

jr $ra /l $ra should have PC = PC + 4

/I PC = PC + 4 should be the next address after jump to swap

Part B: Procedures with Callee Saving (old exam question):
Assume that you have written the following C code:

/) m e
int variablel = 10; // global variable
int variable?2 = 20; // global variable
[m e
int main(void) {
int i =1; // assigned to register s0
int j = 2; // assigned to register sl
int k = 3; // assigned to register a3
int m;
int n;
m = addFourNumbers (i, Jj);
n=1+ 3j; // 1+ 2 =3
printf (*m is %d\n”, m); // printf modifies no registers
printf(*n is %d\n”, n); // printf modifies no registers
printf (“k is %d\n”, k); // printf modifies no registers
}
[m e
int addFourNumbers (int x, int y) {
int 1i; // assigned to register s0
int j; // assigned to register sl
int k; // assigned to register s2
i = x + y; // 1+ 2 =3
j = variablel + variable2; // 10 + 20 = 30
k =1+ 3; // 3 + 30 = 33
return k;
}
[m e
The output of the printf statements in main is: m is 33
n is 3
k is 3

Assume this program was compiled into MIPS assembly language with the register conventions
described on Slide 12 of Lecture 07/08. Also, note that in the comments of the program, | have
indicated that certain variables will be assigned to certain registers when this program is compiled and
assembled. Using a callee calling convention, answer the questions below:

Q-i: Ideally, how many arguments to the function addFourNumbers must be
saved on the stack?

0. By default, arguments should be copied into registers.

Q-ii: What (if anything) should the assembly language for main() do right
before calling addFourNumbers?

Copy values of s registers into argument registers; save value of k (in $a3) onto the stack

Q-iii: What is the first thing that the assembly language for addFourNumbers
should do upon entry into the function call?

Callee save the s registers

Q-iv: What is the value of register number 2 (i.e. 0010,) after main completes
(assuming there were no other function calls, no interrupts, no context
switches, etc.)

33. Register 2 = v0. It should not have changed.
(different answer if you assume printf returns value)

Q-v: Does the return address register ($ra) need to be saved on the stack
for this program? Justify your answer. (Assume main() does not return).

No — if no other procedures are called.

Part C: Procedures with Callee Saving (old exam question):
Assume you have the following C code:

int main(void) {

int x =10; # x maps to $s1
inty = 20; #y maps to $s2
int z = 30; # z maps to $s3
int a; # a maps to $t0
int b; # b maps to $t1
int c; # ¢ maps to $t2
C=X+Y;

a = multiply(x, z);

b=c+x;

}

int multiply(int a, int b) {
int q; # g maps to $t0

int z; n # z maps to $t1
<« |

q = add();

z=a*b;/ A

return z;

}

int add() {
intm =5; # m maps to $t4
intn=4; # n maps to $t5
inty;
y=a+b;
returny;

}

Assuming the MIPS calling convention, answer questions A-E. Note — no assembly code/machine
instructions are required in your answers; simple explanations are sufficient.

Q-iii:

Q-iv:

What, if anything must main() do before calling multiply?

Save $t2 to stack, needed upon return.
Also, copy $s1 to $a0 and copy $s3 to $atl

Does multiply need to save anything to the stack? If so, what?
$31

The s registers associated with main()
The argument registers passed into multiply before calling add()

Assume that multiply returns its value to main() per the MIPS register convention. What
machine instructions might we see at A to completely facilitate the function return?

We have to copy the value in $t1 to $2.

We would call a jal instruction
We would adjust the stack pointer, restored saved registers.

What line of code should the return address register point to at A?

b=c+x

Other answers were considered correct based on stated assumptions.

Q-v:

What line of code should the return address register point to at lB?

b=c+x

Other answers were considered correct based on stated assumptions.

Part D: More Complex Example:

Let’s write the MIPS code for the following:

for(i=1; i<5; i++) { int function(int, int) { Assume:
A(i) = B*d(i); A(i) = A(i-1); Addr. of A = $18
if(d(i) >= e) { e = A(i); Addr. of d = $19
e = function(A,i); return e; B = $20
} } e = $21
}
(We pass in starting “address of A” and “i")
Question/Comment My Solution Comment
1% want to initialize addi $16, $0, 1 # Initialize i to 1
loop variables. What addi $17, $0, 5 # Initialize $17 to 5

registers should we
use, how should we
do it?

(in both cases, saved registers are used — we
want this data available post function call)

2" calculate address
of d(i) and load. What
kind of registers
should we use?

Loop: sll $8, $16, 2
add $8, $19, $8
Iw $9, 0($8)

store i*4 in $8 (temp register OK)
add start of d to i*4 to get address of d(i)
load d(i) > needs to be in register to do math

Calculate B*d(i)

mult $10, $9, $20

store result in temp to write back to memory

Calculate address of
A(i)

sl $11, $16, 2
add $11, $11, $18

CANNOT do:
add $11, $8, $18

Same as above

We overwrote
But, would have been better to save i*4
Why? Lower CPI

Store result into A(i)

sw $10, 0($11)

Store result into a(i)

Now, need to check
whether or not d(i) >=
e. How? Assume no
ble.

slt $1, $9, $22

bne $0, $1, start again

Check if $9 < $22 (i.e. d(i) < e)
Still OK to use $9 > not overwritten
(temp does not mean goes away immediately)

#ifd(i) <e, $1 =1
#if d(i) >= e, $1 = 0 (and we want to call function)
(if $1 !'= 0, do not want to call function)

Given the above add $4, $18, $0 # load address of (A) into an argument register
setup, what comes add $5, $16, $0 # load i into an argument register

next? (Falls through to | x: jal function # call function; $31 € x + 4 (if x = PC of jal)
the next function call).
Assume argument
registers, what setup
code is needed?

Finish rest of code: add $21, 30, $2 # returned value reassigned to $21
What to do? Copy sa: addi $16, $16, 1 # update i by 1 (array index)
return value to $21. bne $16, $17, loop | #ifi <5, loop

Update counter, check
counter. Where is
“start again” at? A better way:

Could make array index multiple of 4

Assume you will func: subi $5, $5, 1 # subtract 1 from i
reference A(i-1) with Iw sll $8, $5, $2 # multiply i by 4 - note
... 0($x). What 4 add $9, $4, $8 # add start of address to (i-1)
instruction sequence lw $10, 0($9) # load A(i-1)
is required?
Finish up function. sw $10, 4($9) # store A(i-1) in A(i)
add $2, $10, $0 # put A(i-1) into return register ($2)

Return jr $31 # PC = contents of $31

